汽车工程
动力传动系统
堆栈(抽象数据类型)
测功机
燃料效率
行驶循环
汽车工业
冷启动(汽车)
辅助动力装置
电动汽车
环境科学
底盘
闲置
工程类
计算机科学
功率(物理)
电气工程
机械工程
扭矩
航空航天工程
物理
电压
操作系统
程序设计语言
热力学
量子力学
作者
Henning Lohse-Busch,Kevin Stutenberg,Michael Duoba,Xinyu Liu,Amgad Elgowainy,Michael Wang,Thomas Wallner,Brad Richard,Martha Christenson
标识
DOI:10.1016/j.ijhydene.2019.10.150
摘要
This paper presents an in-depth laboratory technology assessment of a 2016 Toyota Mirai Fuel Cell (FC) vehicle based on chassis dynamometer testing. The 114.6 kW FC stack has a high dynamic response, which makes this powertrain a FC-dominant hybrid electric vehicle. The measured peak efficiency is 66.0% FC stack and 63.7% FC system with an idle hydrogen flow rate of 4.39 g/hr. The high FC system efficiencies at low loads match typical vehicle power spectrums, resulting in a high average vehicle efficiency of 62% compared to 45% and 23% for a hybrid electric vehicle and a conventional vehicle, respectively. An energy breakdown accounts for the FC stack losses, FC system losses, air compressor loads, and heater loads for different drive cycles and different thermal conditions. The cold-start North American city drive cycle (UDDS) energy consumption values are, respectively, 758, 581, 226, and 321 Wh/km at ambient conditions of −18 °C, −7 °C, 25 °C and 35 °C with 850 W/m2 of solar loading. The FC system shutdown and startup processes at temperatures below the freezing point contribute to the increased hydrogen consumption. The raw test data files are available for download, thus providing the research community with a public reference data on a modern production automotive FC system.
科研通智能强力驱动
Strongly Powered by AbleSci AI