亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable multimodal deep learning for real-time pan-tissue pan-disease pathology search on social media

社会化媒体 人工智能 数字化病理学 计算机科学 医学 病理 万维网
作者
Andrew J. Schaumberg,Wendy C. Juarez-Nicanor,Sarah J. Choudhury,Laura Guerra,Bobbi S. Pritt,Mario Prieto,Ricardo Sotillo Sánchez,Khanh Ho,Nusrat Zahra,Betul Duygu Sener,Stephen Yip,Bin Xu,Srinivas Rao,Aurélien Morini,Karra A. Jones,Kathia Rosado-Orozco,Sanjay Mukhopadhyay,Carlos López de Silanes de Miguel,Hongyu Yang,Yale Rosen
出处
期刊:Modern Pathology [Springer Nature]
卷期号:33 (11): 2169-2185 被引量:42
标识
DOI:10.1038/s41379-020-0540-1
摘要

Pathologists are responsible for rapidly providing a diagnosis on critical health issues. Challenging cases benefit from additional opinions of pathologist colleagues. In addition to on-site colleagues, there is an active worldwide community of pathologists on social media for complementary opinions. Such access to pathologists worldwide has the capacity to improve diagnostic accuracy and generate broader consensus on next steps in patient care. From Twitter we curate 13,626 images from 6,351 tweets from 25 pathologists from 13 countries. We supplement the Twitter data with 113,161 images from 1,074,484 PubMed articles. We develop machine learning and deep learning models to (i) accurately identify histopathology stains, (ii) discriminate between tissues, and (iii) differentiate disease states. Area Under Receiver Operating Characteristic (AUROC) is 0.805-0.996 for these tasks. We repurpose the disease classifier to search for similar disease states given an image and clinical covariates. We report precision@k = 1 = 0.7618 ± 0.0018 (chance 0.397 ± 0.004, mean ±stdev ). The classifiers find that texture and tissue are important clinico-visual features of disease. Deep features trained only on natural images (e.g., cats and dogs) substantially improved search performance, while pathology-specific deep features and cell nuclei features further improved search to a lesser extent. We implement a social media bot (@pathobot on Twitter) to use the trained classifiers to aid pathologists in obtaining real-time feedback on challenging cases. If a social media post containing pathology text and images mentions the bot, the bot generates quantitative predictions of disease state (normal/artifact/infection/injury/nontumor, preneoplastic/benign/low-grade-malignant-potential, or malignant) and lists similar cases across social media and PubMed. Our project has become a globally distributed expert system that facilitates pathological diagnosis and brings expertise to underserved regions or hospitals with less expertise in a particular disease. This is the first pan-tissue pan-disease (i.e., from infection to malignancy) method for prediction and search on social media, and the first pathology study prospectively tested in public on social media. We will share data through http://pathobotology.org . We expect our project to cultivate a more connected world of physicians and improve patient care worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助伍佰采纳,获得10
2秒前
5秒前
三金发布了新的文献求助30
9秒前
吴大振发布了新的文献求助10
11秒前
20秒前
李爱国应助mochi采纳,获得10
23秒前
俭朴蜜蜂发布了新的文献求助10
26秒前
27秒前
FashionBoy应助123456采纳,获得10
29秒前
31秒前
33秒前
坚强亦丝应助三金采纳,获得10
35秒前
36秒前
mochi发布了新的文献求助10
38秒前
38秒前
123456发布了新的文献求助10
40秒前
吴大振完成签到,获得积分10
45秒前
情怀应助聪明念真采纳,获得10
47秒前
科研通AI2S应助三金采纳,获得10
1分钟前
Tian完成签到 ,获得积分10
1分钟前
1分钟前
聪明念真发布了新的文献求助10
1分钟前
lim完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助三金采纳,获得10
1分钟前
聪明念真完成签到,获得积分20
1分钟前
深情安青应助三金采纳,获得10
2分钟前
顺心剑身完成签到 ,获得积分10
2分钟前
打打应助mochi采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
mochi发布了新的文献求助10
2分钟前
plucky发布了新的文献求助20
2分钟前
巨型肥猫发布了新的文献求助10
2分钟前
CodeCraft应助三金采纳,获得10
2分钟前
3分钟前
shenqy发布了新的文献求助10
3分钟前
amit_弢完成签到,获得积分20
3分钟前
科研通AI5应助123456采纳,获得10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073435
关于积分的说明 9130959
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156