薄脆饼
等效串联电阻
接触电阻
材料科学
光电子学
钝化
隧道枢纽
兴奋剂
薄板电阻
载流子寿命
载流子
硅
电气工程
复合材料
量子隧道
图层(电子)
工程类
电压
作者
D. Lachenal,P. Papet,B. Legradic,R. B. G. Kramer,T. Kössler,L. Andreetta,N. Holm,W. Frammelsberger,Derk Bäetzner,B. Strahm,Laurie‐Lou Senaud,J.W.A. Schüttauf,Antoine Descoeudres,G. Christmann,Sylvain Nicolay,Matthieu Despeisse,Bertrand Paviet‐Salomon,Christophe Ballif
标识
DOI:10.1016/j.solmat.2019.110036
摘要
This work presents the upscaling of the tunnel IBC technology on large area, Czochralski (Cz) n-type wafers. At the junction level, a self-aligned PECVD masking technology has been developed for the deposition of hydrogenated nano-crystalline silicon (nc-Si:H) layers on industrial 6-inch pseudo-square wafers. This damage free patterning technology allows state-of-the-art passivation with a minority carrier lifetime of 9 ms at an injection level of 10 15 cm -3 , thus enabling extremely long diffusion lengths up to several millimetres. The use of indium-free, cost effective aluminium-doped zinc oxide strongly reduces the materials bill of the tunnel-IBC technology while maintaining very low contact resistance for both the electron and the hole contacts. Remarkably, these tunnel-IBC devices demonstrated a conversion efficiency of 25% on large area (90.25 cm 2 ) industrial wafer with a thickness of 155 μm. Series resistance analysis points out probable losses from the hole contact and the base. The limitation of the Transfer Length Method is discussed when used to extract the hole contact resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI