预处理器
计算机科学
工作流程
可解释性
管道(软件)
数据挖掘
人工智能
数据预处理
推论
软件
机器学习
模式识别(心理学)
程序设计语言
数据库
作者
Oscar Estéban,Christopher J. Markiewicz,Ross Blair,Craig A. Moodie,Ayse Ilkay Isik,Asier Erramuzpe,James D. Kent,Mathias Goncalves,Elizabeth DuPré,M Snyder,Hiroyuki Oya,Satrajit Ghosh,Jessey Wright,Joke Durnez,Russell A. Poldrack,Krzysztof J. Gorgolewski
出处
期刊:Nature Methods
[Springer Nature]
日期:2018-12-04
卷期号:16 (1): 111-116
被引量:2520
标识
DOI:10.1038/s41592-018-0235-4
摘要
Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results. fMRIPrep is a robust and easy-to-use pipeline for preprocessing of diverse fMRI data. The transparent workflow dispenses of manual intervention, thereby ensuring the reproducibility of the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI