Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification

赤铁矿 材料科学 光电流 电解质 异质结 无机化学 普鲁士蓝 光电化学 分解水 化学工程 电化学 光催化 电极 冶金 催化作用 化学 光电子学 工程类 物理化学 生物化学
作者
Pengyi Tang,Lijuan Han,Franziska Simone Hegner,Paul Paciok,Martí Biset‐Peiró,Hongchu Du,Xian‐Kui Wei,Lei Jin,Haibing Xie,Qin Shi,Teresa Andreu,Mónica Lira‐Cantú,Marc Heggen,Rafal E. Dunin‐Borkowski,Núria Lopéz,José Ramón Galán‐Mascarós,J.R. Morante,Jordi Arbiol
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (34) 被引量:92
标识
DOI:10.1002/aenm.201901836
摘要

Abstract State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe 2 O 3 /Fe 2 TiO 5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm −2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe 2 TiO 5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe 2 O 3 /Fe 2 TiO 5 /CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助氨基酸采纳,获得30
刚刚
刚刚
科研通AI2S应助zink采纳,获得10
1秒前
科目三应助Jimmy采纳,获得10
1秒前
1秒前
1秒前
芋圆Z.发布了新的文献求助10
2秒前
2秒前
东皇太憨完成签到,获得积分10
2秒前
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
orixero应助韭黄采纳,获得10
4秒前
gnufgg完成签到,获得积分10
4秒前
科研通AI5应助tabor采纳,获得10
4秒前
4秒前
互助互惠互通完成签到,获得积分10
4秒前
脑洞疼应助ziyiziyi采纳,获得10
5秒前
5秒前
5秒前
屹舟完成签到,获得积分10
6秒前
zjudxn关注了科研通微信公众号
6秒前
7秒前
7秒前
科研通AI5应助hu970采纳,获得10
7秒前
7秒前
艺玲发布了新的文献求助10
8秒前
咚咚咚完成签到,获得积分10
8秒前
芋圆Z.完成签到,获得积分10
8秒前
atad2发布了新的文献求助10
8秒前
li梨完成签到,获得积分10
8秒前
9秒前
晏小敏完成签到,获得积分10
9秒前
爆米花应助风中寄云采纳,获得10
10秒前
屹舟发布了新的文献求助10
10秒前
Dou完成签到,获得积分10
10秒前
白泯完成签到,获得积分10
11秒前
1ssd发布了新的文献求助10
11秒前
667发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759