里程计
计算机科学
可观测性
惯性参考系
稳健性(进化)
惯性测量装置
计算机视觉
视觉里程计
人工智能
单眼
机器人
数学
移动机器人
化学
物理
基因
量子力学
生物化学
应用数学
作者
Zheng Huai,Guoquan Huang
标识
DOI:10.1177/0278364919853361
摘要
In this paper, we propose a novel robocentric formulation of the visual–inertial navigation system (VINS) within a sliding-window filtering framework and design an efficient, lightweight, robocentric visual–inertial odometry (R-VIO) algorithm for consistent motion tracking even in challenging environments using only a monocular camera and a six-axis inertial measurement unit (IMU). The key idea is to deliberately reformulate the VINS with respect to a moving local frame, rather than a fixed global frame of reference as in the standard world-centric VINS, in order to obtain relative motion estimates of higher accuracy for updating global pose. As an immediate advantage of this robocentric formulation, the proposed R-VIO can start from an arbitrary pose, without the need to align the initial orientation with the global gravitational direction. More importantly, we analytically show that the linearized robocentric VINS does not undergo the observability mismatch issue as in the standard world-centric counterparts that has been identified in the literature as the main cause of estimation inconsistency. Furthermore, we investigate in depth the special motions that degrade the performance in the world-centric formulation and show that such degenerate cases can be easily compensated for by the proposed robocentric formulation, without resorting to additional sensors as in the world-centric formulation, thus leading to better robustness. The proposed R-VIO algorithm has been extensively validated through both Monte Carlo simulation and real-world experiments with different sensing platforms navigating in different environments, and shown to achieve better (or competitive at least) performance than the state-of-the-art VINS, in terms of consistency, accuracy, and efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI