Robocentric visual–inertial odometry

里程计 计算机科学 可观测性 惯性参考系 稳健性(进化) 惯性测量装置 计算机视觉 视觉里程计 人工智能 单眼 机器人 数学 移动机器人 化学 物理 基因 量子力学 生物化学 应用数学
作者
Zheng Huai,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:41 (7): 667-689 被引量:24
标识
DOI:10.1177/0278364919853361
摘要

In this paper, we propose a novel robocentric formulation of the visual–inertial navigation system (VINS) within a sliding-window filtering framework and design an efficient, lightweight, robocentric visual–inertial odometry (R-VIO) algorithm for consistent motion tracking even in challenging environments using only a monocular camera and a six-axis inertial measurement unit (IMU). The key idea is to deliberately reformulate the VINS with respect to a moving local frame, rather than a fixed global frame of reference as in the standard world-centric VINS, in order to obtain relative motion estimates of higher accuracy for updating global pose. As an immediate advantage of this robocentric formulation, the proposed R-VIO can start from an arbitrary pose, without the need to align the initial orientation with the global gravitational direction. More importantly, we analytically show that the linearized robocentric VINS does not undergo the observability mismatch issue as in the standard world-centric counterparts that has been identified in the literature as the main cause of estimation inconsistency. Furthermore, we investigate in depth the special motions that degrade the performance in the world-centric formulation and show that such degenerate cases can be easily compensated for by the proposed robocentric formulation, without resorting to additional sensors as in the world-centric formulation, thus leading to better robustness. The proposed R-VIO algorithm has been extensively validated through both Monte Carlo simulation and real-world experiments with different sensing platforms navigating in different environments, and shown to achieve better (or competitive at least) performance than the state-of-the-art VINS, in terms of consistency, accuracy, and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的遥发布了新的文献求助10
刚刚
刚刚
缓慢采柳完成签到,获得积分10
刚刚
臭小子发布了新的文献求助10
刚刚
Xxxx发布了新的文献求助10
刚刚
1秒前
1秒前
小二郎应助zht1采纳,获得10
1秒前
Haonan完成签到,获得积分10
1秒前
1秒前
Aulalala完成签到,获得积分10
1秒前
爆米花应助一粟的粉r采纳,获得10
2秒前
zy完成签到,获得积分10
2秒前
caden发布了新的文献求助10
2秒前
方格子发布了新的文献求助10
2秒前
九千七完成签到,获得积分10
2秒前
传统的易绿完成签到,获得积分10
3秒前
楠楠发布了新的文献求助10
3秒前
花开富贵发布了新的文献求助10
3秒前
3秒前
乔苏惠娜完成签到,获得积分10
4秒前
zzzcxxx发布了新的文献求助10
4秒前
浮游应助xh采纳,获得10
4秒前
kytm发布了新的文献求助30
4秒前
乐乐应助zzx采纳,获得10
4秒前
粱涵易完成签到,获得积分10
5秒前
2024dsb发布了新的文献求助10
5秒前
隐形曼青应助酷酷问夏采纳,获得10
5秒前
LC2228发布了新的文献求助30
5秒前
5秒前
bkagyin应助Tsuki采纳,获得10
5秒前
小玉发布了新的文献求助10
6秒前
6秒前
面包发布了新的文献求助30
6秒前
杨扬洋发布了新的文献求助10
6秒前
6秒前
DDvicky发布了新的文献求助10
6秒前
6秒前
Ava应助木木木采纳,获得10
6秒前
Hello应助缓慢采柳采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473591
求助须知:如何正确求助?哪些是违规求助? 4575682
关于积分的说明 14353923
捐赠科研通 4503208
什么是DOI,文献DOI怎么找? 2467556
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429362