Enhanced electron transportation of PF-NR2 cathode interface by gold nanoparticles

材料科学 阴极 有机发光二极管 光电子学 二极管 纳米技术 图层(电子) 纳米化学 兴奋剂 纳米颗粒 电气工程 工程类
作者
Wei Li,Xiaoyan Wu,Guodong Liu,Yanglong Li,Lingyuan Wu,Bo Fu,Weiping Wang,Dayong Zhang,Jianheng Zhao
出处
期刊:Nanoscale Research Letters [Springer Nature]
卷期号:14 (1) 被引量:5
标识
DOI:10.1186/s11671-019-3090-z
摘要

In order to achieve a wider organic light-emitting diode (OLED) commercial popularity, solution processing inverted polymer light-emitting diode (iPLED) is a trend for further development, but there is still a gap for solution processing devices to achieve commercialization. The improvement of the performance iPLEDs is a research topic of intense current interest. The modification of the cathode interface layer of poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PF-NR2) can greatly improve the performance of the devices. However, the electron transportation of the cathode interface layer of PF-NR2 films is currently poor, and there is substantial interest in improving its electron transportation to further enhance the performance of organic optoelectronic devices. In this paper, gold nanoparticles (Au NPs) with a particle size of 20 nm were prepared and doped into the interface layer PF-NR2 at a specified ratio. The electron transportation of the interface layer of PF-NR2 was greatly improved, as judged by conductive atomic force microscopy measurements, which is due to the excellent conductivity of Au NPs. Herein, we demonstrate improved electron transportation of the interface layer by doping Au NPs in PF-NR2 film, which provides important and practical theoretical guidance and technical support for the preparation of high performance organic optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只有个石头完成签到,获得积分10
刚刚
zhy给zhy的求助进行了留言
刚刚
1秒前
微笑的白羊完成签到,获得积分20
1秒前
xmfffff完成签到,获得积分10
2秒前
2秒前
橙花完成签到,获得积分10
2秒前
漂亮的访波完成签到,获得积分10
2秒前
3秒前
心流发布了新的文献求助10
3秒前
3秒前
DueDue0327发布了新的文献求助10
3秒前
TP完成签到,获得积分10
4秒前
思源应助姜起蛟采纳,获得10
4秒前
5秒前
傲寒发布了新的文献求助10
5秒前
感动城发布了新的文献求助10
5秒前
Hello应助有风来采纳,获得10
7秒前
孟青完成签到 ,获得积分10
7秒前
8秒前
哈精完成签到,获得积分20
9秒前
茄子爱睡觉完成签到,获得积分10
9秒前
10秒前
姜起蛟完成签到,获得积分10
11秒前
优雅的橘子完成签到,获得积分10
12秒前
wicky发布了新的文献求助10
12秒前
123应助难过梦竹采纳,获得20
12秒前
13秒前
13秒前
虚心的山柏完成签到,获得积分10
13秒前
Y.应助大气元彤采纳,获得20
13秒前
13秒前
14秒前
香蕉觅云应助呆呆采纳,获得10
14秒前
usu发布了新的文献求助10
16秒前
Camellia发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
改改发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313164
求助须知:如何正确求助?哪些是违规求助? 2945518
关于积分的说明 8525845
捐赠科研通 2621328
什么是DOI,文献DOI怎么找? 1433461
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650493