Data processing strategies in wind energy forecasting models and applications: A comprehensive review

离群值 计算机科学 数据挖掘 稳健性(进化) 风力发电 特征选择 数据处理 机器学习 可再生能源 人工智能 工程类 数据库 生物化学 基因 电气工程 化学
作者
Hui Liu,Chao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:249: 392-408 被引量:295
标识
DOI:10.1016/j.apenergy.2019.04.188
摘要

Given the intermittent nature of the wind, accurate wind energy forecasting is significant to the proper utilization of renewable energy sources. In recent years, data-driven models based on past observations have been widely employed in the literature. Various types of data processing methods are successfully applied to assist these models and further improve forecasting performance. Comprehensive research of their methodologies is called on for a thorough understanding of current challenges that affect model accuracy and efficiency. To address the knowledge gap, this paper presents an exhaustive review and categorization of data processing in wind energy forecasting. The utilized techniques are classified into seven categories according to the applications: decomposition, feature selection, feature extraction, denoising, residual error modeling, outlier detection, and filter-based correction. An overall analysis of their intentions, positions, characteristics, and implementation details is provided. A general evaluation is carried out from different perspectives including accuracy improvement, usage frequency, consuming time, robustness to parameters, maturity, and implementation difficulty. Among the existing data processing methods, outlier detection and filter-based correction are relatively less used. Their potential can be better explored in the future. Furthermore, some possible research directions and challenges of data processing in wind energy forecasting are provided, in order to encourage subsequent research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eagler67完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
昔年若许完成签到,获得积分10
2秒前
2秒前
幽默枫完成签到,获得积分10
2秒前
美丽的小羊完成签到,获得积分10
3秒前
邱琳完成签到,获得积分10
3秒前
4秒前
润润轩轩发布了新的文献求助10
4秒前
wait完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助张_5238采纳,获得10
5秒前
阿辉发布了新的文献求助10
5秒前
科目三应助大溺采纳,获得10
5秒前
弹剑作歌完成签到,获得积分10
5秒前
5秒前
领导范儿应助LJW采纳,获得10
5秒前
5秒前
popo完成签到 ,获得积分10
6秒前
棉花糖发布了新的文献求助20
6秒前
zzzxhhr完成签到,获得积分10
6秒前
6秒前
wfs完成签到,获得积分10
6秒前
7秒前
超级大定春完成签到,获得积分20
7秒前
Pearl完成签到,获得积分20
8秒前
Stella发布了新的文献求助10
8秒前
9秒前
CodeCraft应助迅速的晟睿采纳,获得10
9秒前
9秒前
9秒前
10秒前
特务兔完成签到 ,获得积分10
10秒前
苏打发布了新的文献求助10
10秒前
10秒前
小马甲应助自觉梦菲采纳,获得10
10秒前
虚心的飞鸟完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271078
求助须知:如何正确求助?哪些是违规求助? 4428940
关于积分的说明 13786582
捐赠科研通 4306892
什么是DOI,文献DOI怎么找? 2363309
邀请新用户注册赠送积分活动 1358974
关于科研通互助平台的介绍 1321910