Data processing strategies in wind energy forecasting models and applications: A comprehensive review

离群值 计算机科学 数据挖掘 稳健性(进化) 风力发电 特征选择 数据处理 机器学习 人工智能 工程类 数据库 生物化学 基因 电气工程 化学
作者
Hui Liu,Chao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:249: 392-408 被引量:182
标识
DOI:10.1016/j.apenergy.2019.04.188
摘要

Given the intermittent nature of the wind, accurate wind energy forecasting is significant to the proper utilization of renewable energy sources. In recent years, data-driven models based on past observations have been widely employed in the literature. Various types of data processing methods are successfully applied to assist these models and further improve forecasting performance. Comprehensive research of their methodologies is called on for a thorough understanding of current challenges that affect model accuracy and efficiency. To address the knowledge gap, this paper presents an exhaustive review and categorization of data processing in wind energy forecasting. The utilized techniques are classified into seven categories according to the applications: decomposition, feature selection, feature extraction, denoising, residual error modeling, outlier detection, and filter-based correction. An overall analysis of their intentions, positions, characteristics, and implementation details is provided. A general evaluation is carried out from different perspectives including accuracy improvement, usage frequency, consuming time, robustness to parameters, maturity, and implementation difficulty. Among the existing data processing methods, outlier detection and filter-based correction are relatively less used. Their potential can be better explored in the future. Furthermore, some possible research directions and challenges of data processing in wind energy forecasting are provided, in order to encourage subsequent research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的皮皮虾完成签到 ,获得积分10
1秒前
Jasper应助欻欻采纳,获得10
1秒前
2秒前
3秒前
dhhaoyihong发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助简单秋烟采纳,获得10
5秒前
谨慎招牌完成签到,获得积分10
5秒前
6秒前
陈麦子发布了新的文献求助10
6秒前
科研通AI2S应助夏蓉采纳,获得10
7秒前
skywalker发布了新的文献求助10
7秒前
无花果应助kls采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
WW应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
10秒前
曾经听云完成签到,获得积分10
10秒前
云澈完成签到,获得积分10
11秒前
12秒前
dhhaoyihong完成签到,获得积分10
12秒前
敏感绫萱发布了新的文献求助10
13秒前
15秒前
zjy发布了新的文献求助10
15秒前
17秒前
18秒前
nihao2023发布了新的文献求助10
18秒前
斯文败类应助silence采纳,获得10
18秒前
20秒前
俭朴书翠发布了新的文献求助10
22秒前
Mississippiecho完成签到,获得积分10
23秒前
科研通AI2S应助顺利琦采纳,获得10
25秒前
典雅巧凡发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291