作者
Nengxu Li,Shuxia Tao,Yihua Chen,Xiuxiu Niu,Chidozie Onwudinanti,Chen Hu,Zhiwen Qiu,Ziqi Xu,Guanhaojie Zheng,Ligang Wang,Yu Zhang,Liang Li,Huifen Liu,Yingzhuo Lun,Jiawang Hong,Xueyun Wang,Yuquan Liu,Haipeng Xie,Yongli Gao,Yang Bai,Shihe Yang,Geert Brocks,Qi Chen,Huanping Zhou
摘要
Defects play an important role in the degradation processes of hybrid halide perovskite absorbers, impeding their application for solar cells. Among all defects, halide anion and organic cation vacancies are ubiquitous, promoting ion diffusion and leading to thin-film decomposition at surfaces and grain boundaries. Here, we employ fluoride to simultaneously passivate both anion and cation vacancies, by taking advantage of the extremely high electronegativity of fluoride. We obtain a power conversion efficiency of 21.46% (and a certified 21.3%-efficient cell) in a device based on the caesium, methylammonium (MA) and formamidinium (FA) triple-cation perovskite (Cs0.05FA0.54MA0.41)Pb(I0.98Br0.02)3 treated with sodium fluoride. The device retains 90% of its original power conversion efficiency after 1,000 h of operation at the maximum power point. With the help of first-principles density functional theory calculations, we argue that the fluoride ions suppress the formation of halide anion and organic cation vacancies, through a unique strengthening of the chemical bonds with the surrounding lead and organic cations. Defects and defect migration are detrimental for perovskite solar cell efficiency and long-term stability. Li et al. show that fluoride is able to suppress the formation of halide anion and organic cation vacancy defects by restraining the relative ions via ionic and hydrogen bonds.