Stochastic Modeling of Degradation Behavior of Hydrogels

自愈水凝胶 聚合物 肿胀 的 甲基丙烯酸酯 高分子化学 右旋糖酐 化学 材料科学 动力学 反应速率常数 化学工程 复合材料 共聚物 有机化学 物理 工程类 量子力学
作者
Ghodsiehsadat Jahanmir,Mohammad J. Abdekhodaie,Ying Chau
出处
期刊:Macromolecules [American Chemical Society]
卷期号:51 (11): 3941-3952 被引量:16
标识
DOI:10.1021/acs.macromol.8b00165
摘要

We describe here a theoretical framework to model the bulk degradation of hydrogels, which are prepared by chemical cross-linking of pendant functional groups on long polymer chains. The random order of the cleavage of degradable bonds was described by stochastic Monte Carlo simulation. The events of bond cleavage were related to the macroscopic changes of hydrogel by the Bray–Merrill equation. Next, the time for the gel to disintegrate was predicted by considering the relation between the recursive nature in breaking the cross-link nodes and gel-to-sol transition. To start the simulation, initial network properties including the number of active functional groups on the polymer chain and the concentration of polymer were employed as input, and the kinetic rate constant of bond cleavage was fitted for the swelling profile. No fitting parameter was required for disintegration time. A series of degradable hydrogels composed of dextran modified by methacrylate and thiol groups were synthesized and examined experimentally to verify the models. The measured mass swelling ratio and gel disintegration time matched with the model predictions. Correlation was found between the initial hydrogel network properties and the profiles of degradation. The results also revealed that degradable hydrogels with a wide range of disintegration times (from 3 days to 1 month) could be prepared by manipulating the hydrogel formulation (for example, polymer concentration and degree of modification) without altering the chemistry of the cleavable bond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大黄蜂发布了新的文献求助10
1秒前
英姑应助guygun采纳,获得10
1秒前
Feng完成签到,获得积分10
2秒前
3秒前
花花完成签到,获得积分10
3秒前
一言矣完成签到 ,获得积分10
4秒前
海绵宝宝完成签到,获得积分10
5秒前
贪吃的猴子完成签到,获得积分10
5秒前
long完成签到 ,获得积分10
6秒前
研友_LOqqmZ发布了新的文献求助10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
kilig应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
清心淡如水完成签到,获得积分10
7秒前
Hao应助命运的X号采纳,获得10
8秒前
9秒前
10秒前
哭泣恋风完成签到 ,获得积分10
10秒前
zhizhzihzih完成签到,获得积分10
10秒前
10秒前
2568269431完成签到 ,获得积分10
11秒前
panzer发布了新的文献求助10
11秒前
11秒前
12秒前
smile发布了新的文献求助10
12秒前
13秒前
酷炫蚂蚁发布了新的文献求助10
13秒前
13秒前
Andy_Cheung完成签到,获得积分10
13秒前
feng完成签到,获得积分10
14秒前
maomao发布了新的文献求助10
14秒前
leena完成签到,获得积分10
14秒前
14秒前
青衣北风发布了新的文献求助10
15秒前
feng发布了新的文献求助10
15秒前
guygun发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824