材料科学
阴极
锂(药物)
离子
Crystal(编程语言)
化学工程
扩散
纳米技术
结晶学
分析化学(期刊)
物理化学
热力学
物理
程序设计语言
化学
内分泌学
工程类
医学
量子力学
色谱法
计算机科学
作者
Xingtao Xu,Hua Huo,Jiyuan Jian,Liguang Wang,He Zhu,Sheng Xu,Xiaoshu He,Geping Yin,Chunyu Du,Xueliang Sun
标识
DOI:10.1002/aenm.201803963
摘要
Abstract Ni‐rich Li[Ni x Co y Mn 1− x − y ]O 2 ( x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g −1 . Unfortunately, the anisotropic properties associated with the α‐NaFeO 2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li + ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li + diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g −1 at 3.0–4.3 V) and rate capability (152.7 mAh g −1 at a current density of 1000 mA g −1 ). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI