传递率(结构动力学)
隔振
振动
非线性系统
固有频率
调谐质量阻尼器
刚度
振动控制
结构工程
阻尼器
加速度
控制理论(社会学)
物理
工程类
声学
计算机科学
经典力学
人工智能
控制(管理)
量子力学
作者
Yuhong Wang,Xingjian Jing
标识
DOI:10.1016/j.ymssp.2018.03.045
摘要
Nonlinearity is more and more shown to be very beneficial to various engineering practice, including vibration control, vibration energy harvesting and structural health monitoring, etc. An X-shaped structure has been investigated recently for its special and beneficial nonlinear stiffness and damping characteristics in passive vibration isolation and suppression. In this study, a novel n-layer vertically-asymmetric X-shaped structure is systematically studied for its generic modelling, nonlinear stiffness/damping features and dynamic response in vibration isolation. It is shown that, (a) micro-gravity environment can reduce the linear natural frequency and it can improve the vibration isolation performance in the vertical direction (good for micro-gravity environment vibration control), and an optimal assembly angle α1 and rod-length ratio s1 can be designed to achieve the minimum natural frequency when the gravity acceleration is not equal to zero for the best vibration isolation performance; (b) the asymmetric structure can produce lower natural frequency than that of symmetric counterparts (i.e. s1 = 1/s2 = 1) by properly adjusting rod-length ratio s1 (or s2), and the developed generic model can be used freely to study the structure response under different asymmetric settings; (c) the transmissibility of the asymmetric X-shaped structure can be tuned to have much lower transmissibility than that of the symmetric counterpart, which is very beneficial for vibration isolation; (d) the structure in the horizontal direction demonstrates very special dynamic response characteristics which can well explain a linear damper in the horizontal direction much better for vibration energy absorption for a much wider frequency range compared with the vertical direction. It should be noticed that instead of direct modeling of the vibration system in vertically direction, the dynamical equation is established with an intermediate variable, due to vertical asymmetry of the structure. The results provide new understanding on the X-shaped structures including its modelling, gravity effect, asymmetric ratio and nonlinear response in both vertical and horizontal directions, which can help practical applications of this class of structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI