Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation

散热片 传热 冷却液 材料科学 优化设计 热的 机械 热流密度 热阻 计算机科学 遗传算法 热力学 数学优化 数学 物理 机器学习
作者
Yunfei Yan,Hongyu Yan,Siyou Yin,Li Zhang,Lixian Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:129: 468-479 被引量:85
标识
DOI:10.1016/j.ijheatmasstransfer.2018.09.120
摘要

Single and multi-objective optimizations based on genetic algorithms are performed to find optimized designs of heat sinks with Y-shaped fractal network, and 3D fluid-solid conjugate heat transfer models are developed to revel the differences among heat sinks under different optimization objectives. The accuracy of GA and simulation results are validated by experimental results. Two single-objective optimizations are implemented, and hydraulically optimal model with only 13 mW pumping power and thermally optimal model with 0.121 K/W thermal resistance are obtained, showing the excellent heat and mass transfer characteristics of fractal network. Results indicate that hydraulically optimal model has higher energy economy and requires less pumping powers, about 54.5–67.2% of thermally optimal model with coolant flow rate ranging from 200 to 400 ml/min. However, it performs poorly in heat removal. Thermally optimal model shows excellent cooling performance, and the thermal resistance is about 1/2 of the hydraulically optimal model, but it requires much more energy input in comparison to the hydraulically optimal model. A multi-objective optimal model is obtained by joint optimizations of the thermal resistance and pumping power. It’s found that multi-objective optimal model exhibits similar cooling performance to the thermally optimal model, Tmax and ΔT of multi-objective model are about 3 K and 2 K higher than thermally optimal model with heat flux of 100 W/cm2. Furthermore, the multi-objective optimal model shows higher energy economy which is comparable to the hydraulically optimal model, and requires less pumping power compared with thermally optimal model, about 25% lower at 400 ml/min. The multi-objective optimal model offers excellent thermal management within high power density ICs while reducing energy consumption effectively. Therefore, the multi-objective optimization based on genetic algorithms is an effective method for the design of MCHSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西门子云完成签到,获得积分10
1秒前
echo发布了新的文献求助10
2秒前
hsm发布了新的文献求助10
2秒前
4秒前
daisy发布了新的文献求助10
5秒前
5秒前
叶黄戍发布了新的文献求助30
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得20
6秒前
lssupreme应助科研通管家采纳,获得10
6秒前
lssupreme应助科研通管家采纳,获得10
6秒前
turquoise应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
西门子云发布了新的文献求助10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
Theprisoners应助科研通管家采纳,获得20
6秒前
dong应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
7秒前
1111应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
Eisbecher发布了新的文献求助10
10秒前
研友_Z30GJ8完成签到,获得积分0
10秒前
可爱的函函应助xuyang采纳,获得10
10秒前
小高发布了新的文献求助50
11秒前
daisy完成签到,获得积分10
12秒前
nature发布了新的文献求助30
13秒前
凶狠的牛排完成签到 ,获得积分10
13秒前
潮小坤发布了新的文献求助10
13秒前
损伤发布了新的文献求助10
13秒前
lifeboast发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662