Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation

散热片 传热 冷却液 材料科学 优化设计 热的 机械 热流密度 热阻 计算机科学 遗传算法 热力学 数学优化 数学 物理 机器学习
作者
Yunfei Yan,Hongyu Yan,Siyou Yin,Li Zhang,Lixian Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:129: 468-479 被引量:85
标识
DOI:10.1016/j.ijheatmasstransfer.2018.09.120
摘要

Single and multi-objective optimizations based on genetic algorithms are performed to find optimized designs of heat sinks with Y-shaped fractal network, and 3D fluid-solid conjugate heat transfer models are developed to revel the differences among heat sinks under different optimization objectives. The accuracy of GA and simulation results are validated by experimental results. Two single-objective optimizations are implemented, and hydraulically optimal model with only 13 mW pumping power and thermally optimal model with 0.121 K/W thermal resistance are obtained, showing the excellent heat and mass transfer characteristics of fractal network. Results indicate that hydraulically optimal model has higher energy economy and requires less pumping powers, about 54.5–67.2% of thermally optimal model with coolant flow rate ranging from 200 to 400 ml/min. However, it performs poorly in heat removal. Thermally optimal model shows excellent cooling performance, and the thermal resistance is about 1/2 of the hydraulically optimal model, but it requires much more energy input in comparison to the hydraulically optimal model. A multi-objective optimal model is obtained by joint optimizations of the thermal resistance and pumping power. It’s found that multi-objective optimal model exhibits similar cooling performance to the thermally optimal model, Tmax and ΔT of multi-objective model are about 3 K and 2 K higher than thermally optimal model with heat flux of 100 W/cm2. Furthermore, the multi-objective optimal model shows higher energy economy which is comparable to the hydraulically optimal model, and requires less pumping power compared with thermally optimal model, about 25% lower at 400 ml/min. The multi-objective optimal model offers excellent thermal management within high power density ICs while reducing energy consumption effectively. Therefore, the multi-objective optimization based on genetic algorithms is an effective method for the design of MCHSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangkang发布了新的文献求助10
刚刚
1秒前
2秒前
专一的书雪完成签到,获得积分10
3秒前
wangting完成签到,获得积分10
3秒前
4秒前
若兰发布了新的文献求助10
6秒前
拼搏愚志完成签到 ,获得积分10
6秒前
KKKkkkkk发布了新的文献求助10
7秒前
linhuafeng完成签到,获得积分10
7秒前
充电宝应助wangting采纳,获得10
8秒前
阳光刺眼发布了新的文献求助10
8秒前
欣喜的迎波完成签到,获得积分10
9秒前
渊崖曙春应助科研靓仔采纳,获得10
9秒前
极品小亮完成签到,获得积分10
9秒前
9秒前
小鲸鱼完成签到,获得积分10
10秒前
JamesPei应助leo采纳,获得10
11秒前
Orange应助椰蓉糕采纳,获得10
13秒前
zyd完成签到,获得积分10
13秒前
开朗亦绿完成签到,获得积分10
13秒前
yhltcm完成签到,获得积分10
14秒前
脑洞疼应助阳光刺眼采纳,获得10
15秒前
15秒前
穆奕完成签到 ,获得积分10
16秒前
18秒前
18秒前
隐形曼青应助Yuan88采纳,获得10
18秒前
JJ完成签到 ,获得积分10
19秒前
愉快天亦完成签到,获得积分10
21秒前
猫小曼完成签到,获得积分10
21秒前
FashionBoy应助bxw采纳,获得10
22秒前
轻松小之发布了新的文献求助10
22秒前
苏绿秋完成签到,获得积分10
22秒前
小马甲应助Will采纳,获得10
23秒前
喜欢我阿尔托莉雅吗完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
腾飞完成签到 ,获得积分10
27秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070