光电流
分解水
纳米棒
异质结
材料科学
光电子学
热液循环
半导体
能量转换效率
化学工程
光电化学
纳米技术
光催化
化学
电化学
催化作用
电极
物理化学
工程类
生物化学
作者
Ji Won Yoon,Do Hong Kim,Jae Hyeok Kim,Ho Won Jang,Jong Heun Lee
标识
DOI:10.1016/j.apcatb.2018.11.057
摘要
A photoactive amine-functionalized Ti metal-organic framework (MOF) (MIL(125)-NH2(Ti)) layer is uniformly coated on vertically ordered TiO2 nanorods (NRs) via a facile hydrothermal reaction, and the performance of the heterojunction photoanode in photoelectrochemical (PEC) water splitting is studied. The photocurrent density of the MIL(125)-NH2/TiO2 NRs reaches 1.63 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode under AM 1.5 G simulated sunlight illumination, which is ∼2.7 times higher than that of pristine TiO2 NRs. The incident photon-to-electron conversion efficiency of the MIL(125)-NH2/TiO2 NRs improves significantly at λmax = 340 nm, implying the promotion of water oxidation through efficient light absorption and charge separation. The enhancement of the PEC activity in the TiO2 NRs caused by an MIL(125)-NH2 coating is discussed in relation to the surface area and elongated configuration of the TiO2 NRs, the band gap of MIL(125)-NH2(Ti), and the type (II) heterojunction. This study demonstrates the rational design of heterojunctions between the semiconductor and the MOF, which paves the way for new facile and general approaches to achieve a high efficiency in water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI