里程计
计算机视觉
地标
人工智能
计算机科学
惯性测量装置
同时定位和映射
视觉里程计
全球定位系统
惯性参考系
滑动窗口协议
姿势
机器人
移动机器人
窗口(计算)
量子力学
电信
操作系统
物理
作者
Jie Jin,Xiaoyang Zhu,Yongshi Jiang,Zhiying Du
出处
期刊:International Conference on Pattern Recognition
日期:2018-08-01
被引量:1
标识
DOI:10.1109/icpr.2018.8545148
摘要
Autonomous vehicles require precise localization for safe control. This paper presents a localization approach based on semantic map and visual inertial odometry for autonomous vehicles. Our approach uses consumer grade parts, and only relies on a single front camera and a consumer grade IMU and a GPS. Using real-time semantic landmark detection and real-time visual inertial odometry, we localize the full 6-DOF pose of the vehicle in the semantic map with mean absolute accuracy at less than 20 cm, With this accuracy, we can achieve high levels of autonomy, and speed up the evolution of autonomous driving. The main contributions of our approach are: (i) 2D-3D semantic landmark matching in continuous frames; (ii) full 6-DOF pose optimization with semantic constraints in a sliding time window.
科研通智能强力驱动
Strongly Powered by AbleSci AI