Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning

强化学习 计算机科学 工作流程 调度(生产过程) 分布式计算 增强学习 人工智能 计算机网络 数学优化 数据库 数学
作者
Yuandou Wang,Hang Liu,Wanbo Zheng,Yunni Xia,Yawen Li,Peng Chen,Kunyin Guo,Hong Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 39974-39982 被引量:246
标识
DOI:10.1109/access.2019.2902846
摘要

Cloud Computing provides an effective platform for executing large-scale and complex workflow applications with a pay-as-you-go model. Nevertheless, various challenges, especially its optimal scheduling for multiple conflicting objectives, are yet to be addressed properly. The existing multi-objective workflow scheduling approaches are still limited in many ways, e.g., encoding is restricted by prior experts' knowledge when handling a dynamic real-time problem, which strongly influences the performance of scheduling. In this paper, we apply a deep-Q-network model in a multi-agent reinforcement learning setting to guide the scheduling of multi-workflows over infrastructure-as-a-service clouds. To optimize multi-workflow completion time and user's cost, we consider a Markov game model, which takes the number of workflow applications and heterogeneous virtual machines as state input and the maximum completion time and cost as rewards. The game model is capable of seeking for correlated equilibrium between make-span and cost criteria without prior experts' knowledge and converges to the correlated equilibrium policy in a dynamic real-time environment. To validate our proposed approach, we conduct extensive case studies based on multiple well-known scientific workflow templates and Amazon EC2 cloud. The experimental results clearly suggest that our proposed approach outperforms traditional ones, e.g., non-dominated sorting genetic algorithm-II, multi-objective particle swarm optimization, and game-theoretic-based greedy algorithms, in terms of optimality of scheduling plans generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
meng完成签到,获得积分10
1秒前
沉小墨关注了科研通微信公众号
2秒前
源源发布了新的文献求助10
3秒前
fy完成签到,获得积分20
3秒前
3秒前
桐桐应助害羞外套采纳,获得10
4秒前
杨好圆完成签到,获得积分10
4秒前
天天快乐应助LYY采纳,获得10
4秒前
蚂蚁爱上树完成签到,获得积分10
6秒前
听听完成签到,获得积分10
6秒前
fy发布了新的文献求助50
8秒前
滴滴完成签到,获得积分10
8秒前
大气夜南发布了新的文献求助10
8秒前
10秒前
11秒前
猫和老鼠发布了新的文献求助30
11秒前
忐忑的钢笔完成签到 ,获得积分10
11秒前
Jasper应助蚂蚁爱上树采纳,获得10
13秒前
succ发布了新的文献求助30
13秒前
火箭西红柿完成签到,获得积分10
13秒前
qweqwe完成签到,获得积分10
13秒前
14秒前
14秒前
野原顶不住完成签到,获得积分10
14秒前
14秒前
德鲁梦雨发布了新的文献求助10
15秒前
18秒前
18秒前
19秒前
王多鱼完成签到,获得积分10
19秒前
20秒前
Reftro发布了新的文献求助10
21秒前
21秒前
罗蒙洛索夫完成签到,获得积分10
21秒前
祖诗云应助succ采纳,获得30
22秒前
汉堡包应助Kyogoku采纳,获得10
23秒前
25秒前
可靠铅笔发布了新的文献求助10
26秒前
CipherSage应助王多鱼采纳,获得10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228715
求助须知:如何正确求助?哪些是违规求助? 2876473
关于积分的说明 8195167
捐赠科研通 2543670
什么是DOI,文献DOI怎么找? 1373912
科研通“疑难数据库(出版商)”最低求助积分说明 646868
邀请新用户注册赠送积分活动 621453