已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning

强化学习 计算机科学 工作流程 调度(生产过程) 分布式计算 增强学习 人工智能 计算机网络 数学优化 数据库 数学
作者
Yuandou Wang,Hang Liu,Wanbo Zheng,Yunni Xia,Yawen Li,Peng Chen,Kunyin Guo,Hong Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 39974-39982 被引量:246
标识
DOI:10.1109/access.2019.2902846
摘要

Cloud Computing provides an effective platform for executing large-scale and complex workflow applications with a pay-as-you-go model. Nevertheless, various challenges, especially its optimal scheduling for multiple conflicting objectives, are yet to be addressed properly. The existing multi-objective workflow scheduling approaches are still limited in many ways, e.g., encoding is restricted by prior experts' knowledge when handling a dynamic real-time problem, which strongly influences the performance of scheduling. In this paper, we apply a deep-Q-network model in a multi-agent reinforcement learning setting to guide the scheduling of multi-workflows over infrastructure-as-a-service clouds. To optimize multi-workflow completion time and user's cost, we consider a Markov game model, which takes the number of workflow applications and heterogeneous virtual machines as state input and the maximum completion time and cost as rewards. The game model is capable of seeking for correlated equilibrium between make-span and cost criteria without prior experts' knowledge and converges to the correlated equilibrium policy in a dynamic real-time environment. To validate our proposed approach, we conduct extensive case studies based on multiple well-known scientific workflow templates and Amazon EC2 cloud. The experimental results clearly suggest that our proposed approach outperforms traditional ones, e.g., non-dominated sorting genetic algorithm-II, multi-objective particle swarm optimization, and game-theoretic-based greedy algorithms, in terms of optimality of scheduling plans generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meizi0109完成签到 ,获得积分10
2秒前
齐天大圣完成签到,获得积分10
3秒前
taozi发布了新的文献求助10
7秒前
7秒前
直率媚颜发布了新的文献求助10
9秒前
9秒前
10秒前
Dritsw发布了新的文献求助10
14秒前
Ava应助晓湫采纳,获得10
18秒前
23秒前
24秒前
24秒前
qzs完成签到,获得积分10
25秒前
陈隆发布了新的文献求助10
28秒前
qzs发布了新的文献求助10
28秒前
NexusExplorer应助晓湫采纳,获得10
28秒前
彭于晏应助LLX采纳,获得10
29秒前
29秒前
30秒前
桐桐应助英吉利25采纳,获得10
35秒前
36秒前
ghostpants完成签到,获得积分10
37秒前
38秒前
38秒前
闫伯涵发布了新的文献求助10
41秒前
拿铁发布了新的文献求助10
41秒前
Sensons发布了新的文献求助10
42秒前
yuC发布了新的文献求助10
43秒前
xiaolei完成签到 ,获得积分10
44秒前
46秒前
你好完成签到,获得积分10
46秒前
iNk应助科研通管家采纳,获得20
49秒前
Akim应助科研通管家采纳,获得10
49秒前
orixero应助科研通管家采纳,获得10
49秒前
iNk应助科研通管家采纳,获得20
49秒前
CodeCraft应助科研通管家采纳,获得10
49秒前
50秒前
50秒前
汉堡包应助科研通管家采纳,获得10
50秒前
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963020
求助须知:如何正确求助?哪些是违规求助? 3508944
关于积分的说明 11144216
捐赠科研通 3241909
什么是DOI,文献DOI怎么找? 1791705
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803603