Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning

强化学习 计算机科学 工作流程 调度(生产过程) 分布式计算 增强学习 人工智能 计算机网络 数学优化 数据库 数学
作者
Yuandou Wang,Hang Liu,Wanbo Zheng,Yunni Xia,Yawen Li,Peng Chen,Kunyin Guo,Hong Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 39974-39982 被引量:246
标识
DOI:10.1109/access.2019.2902846
摘要

Cloud Computing provides an effective platform for executing large-scale and complex workflow applications with a pay-as-you-go model. Nevertheless, various challenges, especially its optimal scheduling for multiple conflicting objectives, are yet to be addressed properly. The existing multi-objective workflow scheduling approaches are still limited in many ways, e.g., encoding is restricted by prior experts' knowledge when handling a dynamic real-time problem, which strongly influences the performance of scheduling. In this paper, we apply a deep-Q-network model in a multi-agent reinforcement learning setting to guide the scheduling of multi-workflows over infrastructure-as-a-service clouds. To optimize multi-workflow completion time and user's cost, we consider a Markov game model, which takes the number of workflow applications and heterogeneous virtual machines as state input and the maximum completion time and cost as rewards. The game model is capable of seeking for correlated equilibrium between make-span and cost criteria without prior experts' knowledge and converges to the correlated equilibrium policy in a dynamic real-time environment. To validate our proposed approach, we conduct extensive case studies based on multiple well-known scientific workflow templates and Amazon EC2 cloud. The experimental results clearly suggest that our proposed approach outperforms traditional ones, e.g., non-dominated sorting genetic algorithm-II, multi-objective particle swarm optimization, and game-theoretic-based greedy algorithms, in terms of optimality of scheduling plans generated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王佳友完成签到 ,获得积分10
1秒前
奋斗发布了新的文献求助10
1秒前
是阿丹啊发布了新的文献求助10
1秒前
小小檀健次完成签到,获得积分10
2秒前
ding应助石豪有采纳,获得10
2秒前
Zzzz1发布了新的文献求助10
2秒前
July发布了新的文献求助10
2秒前
半根烟完成签到,获得积分10
3秒前
烟花应助张姣姣采纳,获得10
3秒前
清秀迎彤完成签到,获得积分10
3秒前
3秒前
Jasper应助幸福的雪枫采纳,获得10
3秒前
钙离子发布了新的文献求助10
4秒前
闪闪的澜完成签到,获得积分10
4秒前
Orange应助内向士萧采纳,获得10
4秒前
4秒前
桐桐应助一一采纳,获得10
5秒前
5秒前
homie完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
丁智豪完成签到,获得积分20
6秒前
青鸟飞鱼发布了新的文献求助10
7秒前
小鱼干完成签到,获得积分10
7秒前
CaCu完成签到,获得积分10
7秒前
Zzzz1完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
小二郎应助July采纳,获得10
9秒前
奋斗完成签到,获得积分10
9秒前
科研通AI2S应助悲凉的忆南采纳,获得10
10秒前
10秒前
10秒前
yunpeng完成签到,获得积分20
10秒前
10秒前
10秒前
zzz完成签到,获得积分10
11秒前
标致的坤完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218