去细胞化
戊二醛
生物医学工程
钙化
体内
心脏瓣膜
固定(群体遗传学)
心包
医学
化学
组织工程
材料科学
外科
生物化学
病理
色谱法
生物
生物技术
基因
作者
Jing Liu,Huimin Jing,Yibo Qin,Binhan Li,Zhiting Sun,Deling Kong,Xigang Leng,Zhihong Wang
出处
期刊:ACS Biomaterials Science & Engineering
[American Chemical Society]
日期:2019-01-30
卷期号:5 (3): 1452-1461
被引量:35
标识
DOI:10.1021/acsbiomaterials.8b01311
摘要
In valvular replacement surgery, especially in the construction of bioprosthetic valves with decellularized pericardial xenograft, glutaraldehyde (GA) is routinely utilized as the golden standard reagent to fix bovine or porcine pericardial tissues. However, the apparent defects of GA, including cytotoxicity and calcification, increase the probability of leaflet failure and motivate the exploration for alternatives. Thus, the aim of this study is to develop nonglutaraldehyde combined-cross-linking reagents composed of alginate-EDC/NHS (Alg) or oxidized alginate-EDC/NHS (Alg-CHO) as substitute for GA, which is confirmed to be less toxic and more biocompatible. Evaluations of the fixed acellular bovine pericardial tissues included mechanical performance, thermodynamics/enzymatic/in vivo stability tests, blood compatibility assay, cytocompatibility assay, in vitro anticalcification, and in vivo anticalcification assay by subcutaneous implantation in juvenile Wistar rats. The data revealed that the tissues fixed with the combined cross-linking reagents were superior to GA control and commercially available Sino product in terms of better in vitro hemocompatibility and cytocompatibility, lower calcification levels, better thermodynamics stability, and better regenerative capacity in subcutaneous implants, while the mechanical strength and in vivo stability were comparable. Considering all above performances, it indicated that both Alg and Alg-CHO are appropriate to replace GA as the cross-linkers for biological tissue, particularly as a nonglutaraldehyde fixation for off the shelf decellularized bovine pericardial tissue in the anticalcification cardiac valve applications. Nevertheless, studies on the long-term durability and calcification-resistance capacity in large animal model are further needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI