清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Energy Efficient Dynamic Offloading in Mobile Edge Computing for Internet of Things

计算机科学 能源消耗 移动边缘计算 最优化问题 计算卸载 边缘计算 GSM演进的增强数据速率 排队 Lyapunov优化 无线 计算机网络 随机优化 高效能源利用 数学优化 服务器 分布式计算 电信 算法 人工智能 Lyapunov重新设计 生态学 李雅普诺夫指数 数学 混乱的 生物 电气工程 工程类
作者
Ying Chen,Ning Zhang,Yongchao Zhang,Xin Chen,Wen Wu,Xuemin Shen
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 1050-1060 被引量:252
标识
DOI:10.1109/tcc.2019.2898657
摘要

With proliferation of computation-intensive Internet of Things (IoT) applications, the limited capacity of end devices can deteriorate service performance. To address this issue, computation tasks can be offloaded to the Mobile Edge Computing (MEC) for processing. However, it consumes considerable energy to transmit and process these tasks. In this paper, we study the energy efficient task offloading in MEC. Specifically, we formulate it as a stochastic optimization problem, with the objective of minimizing the energy consumption of task offloading while guaranteeing the average queue length. Solving this offloading optimization problem faces many technical challenges due to the uncertainty and dynamics of wireless channel state and task arrival process, and the large scale of solution space. To tackle these challenges, we apply stochastic optimization techniques to transform the original stochastic problem into a deterministic optimization problem, and propose an energy efficient dynamic offloading algorithm called EEDOA. EEDOA can be implemented in an online manner to make the task offloading decisions with polynomial time complexity. Theoretical analysis is provided to demonstrate that EEDOA can approximate the minimal transmission energy consumption while still bounding the queue length. Experiment results are presented which show the EEDOA’s effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
持卿应助科研通管家采纳,获得10
3秒前
持卿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
milu完成签到,获得积分10
10秒前
13秒前
milu发布了新的文献求助10
16秒前
wakawaka完成签到 ,获得积分10
27秒前
55秒前
莨菪发布了新的文献求助10
56秒前
tt完成签到,获得积分10
1分钟前
斯文的清涟完成签到,获得积分10
1分钟前
1分钟前
盈盈发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
我是老大应助莨菪采纳,获得10
2分钟前
CipherSage应助milu采纳,获得20
2分钟前
2分钟前
2分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
3分钟前
CipherSage应助Penny采纳,获得10
3分钟前
3分钟前
Penny完成签到,获得积分10
3分钟前
Penny发布了新的文献求助10
3分钟前
盈盈发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160