计算机科学
核(代数)
极限学习机
概念漂移
人工智能
机器学习
核方法
系列(地层学)
算法
支持向量机
数学
人工神经网络
数据流挖掘
生物
组合数学
古生物学
作者
Zongying Liu,Chu Kiong Loo,Kitsuchart Pasupa
标识
DOI:10.1007/978-3-030-04224-0_1
摘要
This paper proposes a meta-cognitive recurrent multi-step-prediction model called Meta-cognitive Recurrent Recursive Kernel Online Sequential Extreme Learning Machine with a new modified Drift Detector Mechanism (Meta-RRKOS-ELM-DDM). This model combines the strengths of Recurrent Kernel Online Sequential Extreme Learning Machine (RKOS-ELM) with the recursive kernel method and a new meta-cognitive learning strategy. We apply Drift Detector Mechanism to solve concept drift problem. Recursive kernel method successfully replaces the normal kernel method in RKOS-ELM and generates a fixed reservoir with optimised information. The new meta-cognitive learning strategy can reduce the computational complexity. The experimental results show that Meta-RRKOS-ELM-DDM has a superior prediction ability in different predicting horizons than the others.
科研通智能强力驱动
Strongly Powered by AbleSci AI