Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer

医学 浆液性卵巢癌 计算机断层摄影术 肿瘤科 癌症 浆液性液体 卵巢癌 生物标志物 放射科 内科学 生物 生物化学
作者
Shuo Wang,Zhenyu Liu,Rong Yu,Bin Zhou,Yan Bai,Wei Wei,Wei Wei,Meiyun Wang,Yingkun Guo,Jie Tian
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:132: 171-177 被引量:140
标识
DOI:10.1016/j.radonc.2018.10.019
摘要

Background and purposeRecurrence is the main risk for high-grade serous ovarian cancer (HGSOC) and few prognostic biomarkers were reported. In this study, we proposed a novel deep learning (DL) method to extract prognostic biomarkers from preoperative computed tomography (CT) images, aiming at providing a non-invasive recurrence prediction model in HGSOC.Materials and methodsWe enrolled 245 patients with HGSOC from two hospitals, which included a feature-learning cohort (n = 102), a primary cohort (n = 49) and two independent validation cohorts from two hospitals (n = 49 and n = 45). We trained a novel DL network in 8917 CT images from the feature-learning cohort to extract the prognostic biomarkers (DL feature) of HGSOC. Afterward, a DL-CPH model incorporating the DL feature and Cox proportional hazard (Cox-PH) regression was developed to predict the individual recurrence risk and 3-year recurrence probability of patients.ResultsIn the two validation cohorts, the concordance-index of the DL-CPH model was 0.713 and 0.694. Kaplan–Meier's analysis clearly identified two patient groups with high and low recurrence risk (p = 0.0038 and 0.0164). The 3-year recurrence prediction was also effective (AUC = 0.772 and 0.825), which was validated by the good calibration and decision curve analysis. Moreover, the DL feature demonstrated stronger prognostic value than clinical characteristics.ConclusionsThe DL method extracts effective CT-based prognostic biomarkers for HGSOC, and provides a non-invasive and preoperative model for individualized recurrence prediction in HGSOC. In addition, the DL-CPH model provides a new prognostic analysis method that can utilize CT data without follow-up for prognostic biomarker extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六清完成签到,获得积分10
刚刚
刚刚
wen应助拐角有毒采纳,获得10
1秒前
1秒前
HollidayLee完成签到,获得积分10
1秒前
功夫熊猫完成签到,获得积分20
4秒前
大力初珍发布了新的文献求助10
5秒前
5秒前
1111chen发布了新的文献求助10
6秒前
6秒前
傲慢葫芦发布了新的文献求助10
6秒前
Jackson发布了新的文献求助10
7秒前
希望天下0贩的0应助Bob_Y采纳,获得10
7秒前
7秒前
nhhdhhn发布了新的文献求助10
7秒前
9秒前
yuebaoji发布了新的文献求助10
9秒前
9秒前
功夫熊猫发布了新的文献求助10
10秒前
顾矜应助佳佳采纳,获得10
10秒前
傲慢葫芦完成签到,获得积分20
11秒前
大壮发布了新的文献求助10
11秒前
泛泛之交发布了新的文献求助10
11秒前
12秒前
维尼完成签到,获得积分10
13秒前
友好的冥王星完成签到,获得积分10
13秒前
想躺平的咸鱼人完成签到,获得积分10
14秒前
十三发布了新的文献求助10
14秒前
cxxxx完成签到,获得积分10
15秒前
15秒前
热情凌青完成签到,获得积分10
15秒前
16秒前
su完成签到 ,获得积分10
16秒前
晨曦发布了新的文献求助10
18秒前
情怀应助简单小蕊采纳,获得10
19秒前
小小毅1989完成签到 ,获得积分10
19秒前
Kombate发布了新的文献求助10
19秒前
搜集达人应助大壮采纳,获得10
20秒前
FashionBoy应助傲慢葫芦采纳,获得10
20秒前
羊觅夏发布了新的文献求助20
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547