反平行(数学)
测试表
蛋白质设计
蛋白质结构
结晶学
化学
物理
生物化学
量子力学
磁场
作者
Enrique Marcos,Tamuka M. Chidyausiku,Andrew C. McShan,Thomas Evangelidis,Santrupti Nerli,Lauren Carter,Lucas G. Nivón,Audrey L. Davis,Gustav Oberdorfer,Konstantinos Tripsianes,Nikolaos G. Sgourakis,David Baker
标识
DOI:10.1038/s41594-018-0141-6
摘要
β-sheet proteins carry out critical functions in biology, and hence are attractive scaffolds for computational protein design. Despite this potential, de novo design of all-β-sheet proteins from first principles lags far behind the design of all-α or mixed-αβ domains owing to their non-local nature and the tendency of exposed β-strand edges to aggregate. Through study of loops connecting unpaired β-strands (β-arches), we have identified a series of structural relationships between loop geometry, side chain directionality and β-strand length that arise from hydrogen bonding and packing constraints on regular β-sheet structures. We use these rules to de novo design jellyroll structures with double-stranded β-helices formed by eight antiparallel β-strands. The nuclear magnetic resonance structure of a hyperthermostable design closely matched the computational model, demonstrating accurate control over the β-sheet structure and loop geometry. Our results open the door to the design of a broad range of non-local β-sheet protein structures. Baker, Marcos and colleagues analyze β-arches (loops connecting unpaired β-strands) and derive rules used for de novo design of a hyperthermostable jellyroll structure, with eight antiparallel β-strands forming double-stranded β-helices.
科研通智能强力驱动
Strongly Powered by AbleSci AI