辅助电极
循环伏安法
热液循环
电极
薄膜
色素敏化染料
材料科学
介电谱
氧化锡
电化学
水热合成
X射线光电子能谱
拉曼光谱
扫描电子显微镜
化学工程
结晶度
能量转换效率
钼酸钠
纳米技术
分析化学(期刊)
光电子学
钼酸盐
化学
兴奋剂
有机化学
光学
物理化学
工程类
冶金
复合材料
电解质
物理
作者
R. Senthilkumar,S. Ramakrishnan,Murali Balu,Praveen C. Ramamurthy,Duraisamy Kumaresan,Nikhil K. Kothurkar
标识
DOI:10.1007/s10008-018-4043-7
摘要
MoS2 thin films with marigold flower-like nanostructures were grown on conductive fluorine-doped tin oxide (FTO) substrates through a one-step hydrothermal synthesis for their application as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Different MoS2 thin film samples (A–D) were grown on FTO slides using different concentrations of precursors (sodium molybdate and thioacetamide), while keeping the Mo/S molar ratio constant (1:4.6), in all samples. The effect of varying precursor concentrations (3.2–12.6 mM on MoS2 basis) on the structure of the nanostructured thin films and their performance as DSSC-CEs was investigated. Scanning electron microscopy revealed a material with an infolded petal-like morphology. With increasing precursor concentration, the petal-like structures tended to form bunched nanostructures (100–300 nm) resembling marigold flowers. X-ray diffraction analysis, X-ray photoelectron, and Raman spectroscopy studies showed that the thin films were composed of hexagonal MoS2 with good crystallinity. Hall effect measurements revealed MoS2 to be a p-type semiconductor with a carrier mobility of 219.80 cm2 V−1 s−1 at room temperature. The electrochemical properties of the thin films were examined using cyclic voltammetry and electrochemical impedance spectroscopy. The marigold flower-like MoS2 thin films showed excellent electrocatalytic activity towards the I¯/I3¯ reaction and low charge transfer resistance (Rct) values of 14.77 Ω cm−1, which was close to that of Pt electrode (12.30 Ω cm−1). The maximum power conversion efficiency obtained with MoS2 CE-based DSSCs was 6.32%, which was comparable to a Pt CE-based DSSC (6.38%) under one sun illumination. Similarly, the maximum incident photon-to-charge carrier efficiency exhibited by MoS2 CE-based DSSCs was 65.84%, which was also comparable to a Pt CE-based DSSC (68.38%). The study demonstrated that the marigold flower-like nanostructured MoS2 films are a promising alternative to the conventional Pt-based CEs in DSSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI