丝素
脚手架
槲皮素
材料科学
活力测定
间充质干细胞
骨愈合
生物医学工程
X射线显微断层摄影术
细胞生物学
生物物理学
化学
细胞
解剖
丝绸
生物
生物化学
医学
复合材料
放射科
抗氧化剂
作者
Jeong Eun Song,Nirmalya Tripathy,Dae Hoon Lee,Jong Ho Park,Gilson Khang
标识
DOI:10.1021/acsami.8b08119
摘要
There is a significant rise in the bone grafts demand worldwide to treat bone defects owing to continuous increase in conditions such as injury, trauma, diseases, or infections. Therefore, development of three-dimensional scaffolds has evolved as a reliable technology to address the current limitations for bone tissue regeneration. Mimicking the natural bone, in this study, we have designed a silk fibroin/hydroxyapatite scaffold inlaid with a bioactive phytochemical (quercetin) at different concentrations for promoting osteogenesis, especially focusing on quercetin ability for enhancing bone health. Characterization of the quercetin/silk fibroin/hydroxyapatite (Qtn/SF/HAp) scaffolds showed an increased pore size and irregular porous microstructure with good mechanical strength. The Qtn (low-content)/SF/HAp scaffold was found to be an efficient cell carrier facilitating cellular growth, osteogenic differentiation, and proliferation as compared to SF/HAp and Qtn (high-content)/SF/HAp scaffolds. However, Qtn (high-content)/SF/HAp was observed to inhibit cell proliferation without any effects on cell viability. In vitro and in vivo outcomes studied using bone marrow-derived mesenchymal stem cells (rBMSCs) confirm the cytocompatibility, osteogenic differentiation ability, and prominent upregulation of the bone-specific gene expressions for the rBMSCs-seeded Qtn/SF/HAp scaffolds. In particular, the implanted Qtn (low-content)/SF/HAp scaffolds at the bone defect site were found to be well-attached and amalgamated with the surrounding tissues with approximately 80% bone volume recovery at 6 weeks after surgery as compared with other groups. Based on the aforementioned observations highlighting the quercetin efficiency for bone regeneration, the as-synthesized Qtn (low-content)/SF/HAp scaffolds can be envisioned to provide a biomimetic bone-like microenvironment promoting rBMSCs differentiation into osteoblast, thus suggesting a potential alternative graft for high-performance regeneration of bone tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI