A Local Projection-Based Approach to Individual Tree Detection and 3-D Crown Delineation in Multistoried Coniferous Forests Using High-Density Airborne LiDAR Data

树(集合论) 遥感 天蓬 激光雷达 分割 牙冠(牙科) 投影(关系代数) 体素 树冠 计算机科学 人工智能 数学 地理 算法 医学 数学分析 考古 牙科
作者
Aravind Harikumar,Francesca Bovolo,Lorenzo Bruzzone
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (2): 1168-1182 被引量:36
标识
DOI:10.1109/tgrs.2018.2865014
摘要

Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李佳轩完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
慕青应助cheng4046采纳,获得10
2秒前
wz完成签到,获得积分10
2秒前
ljxx发布了新的文献求助10
2秒前
shurong完成签到,获得积分10
3秒前
33发布了新的文献求助10
3秒前
wangshuo1218完成签到,获得积分20
4秒前
4秒前
4秒前
王瑞钧完成签到,获得积分10
4秒前
5秒前
能干太清完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
酷波er应助潦草采纳,获得10
8秒前
1111完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
wangshuo1218发布了新的文献求助10
9秒前
9秒前
喵喵发布了新的文献求助20
9秒前
飞云发布了新的文献求助10
9秒前
充电宝应助春风何向晚采纳,获得10
10秒前
10秒前
慕青应助义气鲂采纳,获得10
10秒前
11秒前
jiaxin发布了新的文献求助10
11秒前
yangyang2021完成签到,获得积分10
12秒前
包包琪发布了新的文献求助10
12秒前
12秒前
12秒前
elliot完成签到,获得积分10
12秒前
12秒前
13秒前
liuyc完成签到,获得积分10
13秒前
沉默安波完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809