已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

District heating load prediction algorithm based on bidirectional long short-term memory network model

均方误差 超参数 平均绝对百分比误差 计算机科学 算法 系列(地层学) 惯性 人工神经网络 期限(时间) 集合(抽象数据类型) 人工智能 统计 数学 物理 生物 经典力学 古生物学 量子力学 程序设计语言
作者
Mianshan Cui
出处
期刊:Energy [Elsevier]
卷期号:254: 124283-124283 被引量:16
标识
DOI:10.1016/j.energy.2022.124283
摘要

Heating load prediction based on machine learning algorithms has received increasing attention, especially the Long Short Term Memory (LSTM) network, have been shown to have a superior performance in predicting the heat load consumption. However, most of the current research reports on load prediction models using LSTM models are focused on the unidirectional (Uni-LSTM) network. In this paper, a bidirectional (Bi-LSTM) network for heat load prediction is proposed to make full use of the model hyperparameters to obtain the optimal model and to fully compare with the Uni-LSTM model, and the Bi-LSTM model can improve the prediction accuracy of heat load in a district heating system by using both past and future weather information. In addition, the two types of models are set up with different depth-stacked layers, and for each of the proposed models, a hyperparametric optimization tool has been used to obtain the best model. The results indicate that the increase in depth-stacked LSTM layers has no significant improvement in the prediction accuracy. The input time series length reflects the inertia influence duration of the district heating system, and the optimal model can be obtained for different settings of input time series length. The best optimally configured models were compared, and the single-layer Bi-LSTM model outperformed the single-layer Uni-LSTM model by 19.56%, 16.43%, 14.16%, and 20.69% in terms of the Root Mean Square Error (RMSE), Mean Average Percentage Error (MAPE), Mean Absolute Error (MAE), and the coefficient of variation of the RMSE (CV-RMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研达人发布了新的文献求助10
刚刚
suepisode完成签到 ,获得积分10
1秒前
2秒前
小马甲应助科研通管家采纳,获得30
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
yangching应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
id完成签到,获得积分10
2秒前
4秒前
科研通AI2S应助医路通行采纳,获得10
8秒前
暴躁的紫烟应助lingling采纳,获得30
9秒前
13秒前
大模型应助温伊采纳,获得10
14秒前
ww完成签到,获得积分10
15秒前
梓泽丘墟给漠北的求助进行了留言
18秒前
19秒前
20秒前
20秒前
华西招生版完成签到,获得积分10
20秒前
sam关闭了sam文献求助
21秒前
hjc完成签到,获得积分10
22秒前
正直宝贝发布了新的文献求助10
23秒前
Gg完成签到,获得积分10
23秒前
南冥完成签到 ,获得积分10
27秒前
28秒前
aliupeifang完成签到,获得积分10
29秒前
31秒前
31秒前
32秒前
33秒前
张婷婷完成签到 ,获得积分10
33秒前
神勇的小小完成签到,获得积分10
35秒前
不爱吃香菜完成签到 ,获得积分10
36秒前
弄香发布了新的文献求助10
36秒前
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129