Overall optimization of CSP based on ensemble learning for motor imagery EEG decoding

计算机科学 Tikhonov正则化 正规化(语言学) 人工智能 模式识别(心理学) 解码方法 特征选择 特征提取 运动表象 稳健性(进化) 编码(社会科学) 脑-机接口 算法 数学 反问题 脑电图 心理学 数学分析 生物化学 化学 统计 精神科 基因
作者
Shaorong Zhang,Zhibin Zhu,Benxin Zhang,Feng Bao,Tao Yu,Zhi Li,Zhiguo Zhang,Gan Huang,Zhen Liang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103825-103825 被引量:3
标识
DOI:10.1016/j.bspc.2022.103825
摘要

The common spatial pattern (CSP) is an effective feature extraction method in motor imagery-based brain-computer interface (BCI) system. However, CSP also has many defects. Existing CSP improvement methods only make partial improvements, without considering the overall optimization of CSP. In this paper, a new ensemble learning algorithm framework is proposed to improve the decoding performance of CSP, in which the regularization, temporal-spatial-frequency joint optimization, and pair number of spatial filters for CSP are comprehensively considered. First, a new temporal-spatial-frequency feature extraction method based on Tikhonov regularization CSP (TRCSP) is proposed, multiple feature subsets with diversity are extracted by TRCSP with different time windows, regularization parameters, and pair numbers of spatial filters. Second, the least absolute shrinkage and selection operator (LASSO) as base classification model is used for feature selection and classification, in which multiple diversified base classification models are trained. Finally, the base classification models with diversity and higher accuracy are used for ensemble model construction using a new integration rule, during which most of the temporal-spatial-frequency information is fully excavated and utilized. The effectiveness of the proposed method is verified by five motor imagery data sets and the average classification accuracy of all data sets is 85.99%. Compared with the existing CSP methods, the proposed method achieved a better classification effect, and with a small amount of calculation, low model complexity, and high robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火完成签到,获得积分10
刚刚
迷路的小土豆完成签到,获得积分10
刚刚
ding应助爱听歌衬衫采纳,获得10
1秒前
胖川完成签到,获得积分10
1秒前
zedhumble发布了新的文献求助10
1秒前
Hello应助fzy采纳,获得10
1秒前
2秒前
呆呆完成签到,获得积分10
2秒前
可爱的函函应助西子阳采纳,获得10
3秒前
从容成危完成签到 ,获得积分10
3秒前
慕青应助清爽灰狼采纳,获得10
4秒前
无花果应助默默的访旋采纳,获得10
4秒前
5秒前
5秒前
5秒前
周末完成签到,获得积分10
7秒前
8秒前
自由语柳发布了新的文献求助10
9秒前
万能图书馆应助zedhumble采纳,获得10
9秒前
勇往直前发布了新的文献求助10
10秒前
李伟完成签到,获得积分10
10秒前
乐乐应助小胡采纳,获得10
11秒前
三叔应助曲奇饼干采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
西子阳发布了新的文献求助10
13秒前
优雅狗完成签到,获得积分10
14秒前
14秒前
爱科研的龙完成签到,获得积分10
14秒前
通~发布了新的文献求助10
15秒前
科研通AI2S应助一李子真甜采纳,获得10
16秒前
16秒前
笑点低一手完成签到,获得积分10
16秒前
第五个完全数完成签到,获得积分10
17秒前
科研通AI2S应助成就的山水采纳,获得20
17秒前
傲娇班完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905