CAM‐Wnet: An effective solution for accurate pulmonary embolism segmentation

分割 计算机科学 人工智能 联营 图像分割 棱锥(几何) 肺栓塞 模式识别(心理学) 深度学习 编码器 计算机视觉 医学 心脏病学 数学 几何学 操作系统
作者
Zhenhong Liu,Hongfang Yuan,Huaqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5294-5303 被引量:5
标识
DOI:10.1002/mp.15719
摘要

Abstract Background The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE segmentation is still a challenging task at present. The automatic segmentation of PE is particularly important. On the one hand, manual segmentation of PE from a computed tomography (CT) sequence is very time‐consuming and prone to misdiagnose. On the other hand, an accurate contour of the location, volume, and shape of PE can help radiotherapists carry out targeted treatment and thus greatly increase the survival rate of patients. Therefore, developing an automatic and efficient PE segmentation approach is an urgent demand in clinical diagnosis. Purpose An accurate segmentation of PE is critical for the diagnosis of PE. However, it remains a difficult and relevant problem in the field of medical image processing due to factors like incongruent sizes and shapes of emboli regions, and low contrast between embolisms and other tissues. To address this conundrum, in this study, a deep neural network (CAM‐Wnet) that incorporates coordinate attention (CA) mechanisms and pyramid pooling modules (PPMs) is proposed to end‐to‐end segment PE from CT image. Methods CAM‐Wnet architecture is composed of coarse U‐Net and subdivision U‐Net stacked on top of each other. First, the coarse U‐Net uses a pretrained VGG‐19 as an encoder, which can transfer the features learned from ImageNet to other tasks. At the same time, CA residual blocks (CARBs) are introduced into the decoder of the coarse network to obtain a wider range of semantic information and find out the correlation between channels. Then, the multiplied results of input image and preliminary mask are put into the subdivision U‐Net for secondary feature distillation, and the encoder and decoder of the subdivision U‐Net are both constructed from CARBs, too. The PPMs are used between the encoder and the decoder of two U‐Net architectures to utilize global context information and further enhance the feature extraction effect. Finally, the improved focal loss function is used to train the network to further improve the segmentation effect. Results In this study, we used the doctors’ manual contours of the China‐Japan Friendship Hospital dataset to test the proposed architecture. We calculated the Precision, Recall, IoU, and F 1‐score to evaluate the accuracy of the architecture for PE segmentation. The segmentation Precision for PE was found to be 0.9703, Recall was 0.963, IoU was 0.9353, and F 1‐score was 0.9665. The experimental results show the effectiveness of the proposed method to automatically and accurately segment embolism in lung CT images. Furthermore, we also test the performance of our method on the liver tumor segmentation public dataset, which demonstrates the effectiveness and generalization ability of our method. Conclusions CAM‐Wnet obtained more global information and semantic information with the introduction of multiscale pooling and attention mechanisms. Experimental results showed that the proposed method effectively improved the segmentation effect of PE in lung CT images and could be applied to assist doctors in clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsl完成签到 ,获得积分10
2秒前
阿浮完成签到 ,获得积分10
3秒前
沙里飞完成签到 ,获得积分10
9秒前
韦雪莲完成签到 ,获得积分10
10秒前
xl完成签到 ,获得积分10
15秒前
ko1完成签到 ,获得积分10
16秒前
oioi完成签到,获得积分20
17秒前
yhy完成签到 ,获得积分10
17秒前
ycw7777完成签到,获得积分10
18秒前
芽衣完成签到 ,获得积分10
20秒前
文欣完成签到 ,获得积分10
20秒前
无极2023完成签到 ,获得积分10
25秒前
关中人完成签到,获得积分10
26秒前
晴朗完成签到 ,获得积分10
28秒前
我不会乱起名字的完成签到,获得积分10
29秒前
31秒前
njseu完成签到 ,获得积分10
33秒前
chen完成签到 ,获得积分10
33秒前
djbj2022发布了新的文献求助10
38秒前
火星仙人掌完成签到 ,获得积分10
40秒前
泠风来完成签到,获得积分10
40秒前
开心的太清完成签到,获得积分10
42秒前
Ade完成签到,获得积分10
46秒前
mike2012完成签到 ,获得积分10
46秒前
这个硬盘完成签到 ,获得积分10
47秒前
毛聋聋完成签到 ,获得积分10
49秒前
青竹妈妈完成签到,获得积分10
53秒前
一枝完成签到 ,获得积分10
54秒前
666完成签到 ,获得积分10
55秒前
savior完成签到 ,获得积分10
59秒前
兴奋不弱完成签到 ,获得积分10
1分钟前
_xySH完成签到 ,获得积分10
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
1分钟前
微笑的小太阳完成签到 ,获得积分10
1分钟前
1分钟前
研友_LpQgPn发布了新的文献求助10
1分钟前
slsdianzi完成签到,获得积分10
1分钟前
sylnd126发布了新的文献求助10
1分钟前
monster完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865931
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862