亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAM‐Wnet: An effective solution for accurate pulmonary embolism segmentation

分割 计算机科学 人工智能 联营 图像分割 棱锥(几何) 肺栓塞 模式识别(心理学) 深度学习 编码器 计算机视觉 医学 心脏病学 数学 几何学 操作系统
作者
Zhenhong Liu,Hongfang Yuan,Huaqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5294-5303 被引量:5
标识
DOI:10.1002/mp.15719
摘要

Abstract Background The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE segmentation is still a challenging task at present. The automatic segmentation of PE is particularly important. On the one hand, manual segmentation of PE from a computed tomography (CT) sequence is very time‐consuming and prone to misdiagnose. On the other hand, an accurate contour of the location, volume, and shape of PE can help radiotherapists carry out targeted treatment and thus greatly increase the survival rate of patients. Therefore, developing an automatic and efficient PE segmentation approach is an urgent demand in clinical diagnosis. Purpose An accurate segmentation of PE is critical for the diagnosis of PE. However, it remains a difficult and relevant problem in the field of medical image processing due to factors like incongruent sizes and shapes of emboli regions, and low contrast between embolisms and other tissues. To address this conundrum, in this study, a deep neural network (CAM‐Wnet) that incorporates coordinate attention (CA) mechanisms and pyramid pooling modules (PPMs) is proposed to end‐to‐end segment PE from CT image. Methods CAM‐Wnet architecture is composed of coarse U‐Net and subdivision U‐Net stacked on top of each other. First, the coarse U‐Net uses a pretrained VGG‐19 as an encoder, which can transfer the features learned from ImageNet to other tasks. At the same time, CA residual blocks (CARBs) are introduced into the decoder of the coarse network to obtain a wider range of semantic information and find out the correlation between channels. Then, the multiplied results of input image and preliminary mask are put into the subdivision U‐Net for secondary feature distillation, and the encoder and decoder of the subdivision U‐Net are both constructed from CARBs, too. The PPMs are used between the encoder and the decoder of two U‐Net architectures to utilize global context information and further enhance the feature extraction effect. Finally, the improved focal loss function is used to train the network to further improve the segmentation effect. Results In this study, we used the doctors’ manual contours of the China‐Japan Friendship Hospital dataset to test the proposed architecture. We calculated the Precision, Recall, IoU, and F 1‐score to evaluate the accuracy of the architecture for PE segmentation. The segmentation Precision for PE was found to be 0.9703, Recall was 0.963, IoU was 0.9353, and F 1‐score was 0.9665. The experimental results show the effectiveness of the proposed method to automatically and accurately segment embolism in lung CT images. Furthermore, we also test the performance of our method on the liver tumor segmentation public dataset, which demonstrates the effectiveness and generalization ability of our method. Conclusions CAM‐Wnet obtained more global information and semantic information with the introduction of multiscale pooling and attention mechanisms. Experimental results showed that the proposed method effectively improved the segmentation effect of PE in lung CT images and could be applied to assist doctors in clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三完成签到 ,获得积分10
14秒前
猪猪hero应助nssm采纳,获得10
17秒前
shaylie完成签到 ,获得积分10
19秒前
可靠的寒风完成签到,获得积分10
28秒前
29秒前
随便发布了新的文献求助10
30秒前
科研通AI2S应助可靠的寒风采纳,获得10
34秒前
gtgyh完成签到 ,获得积分10
38秒前
yy完成签到 ,获得积分10
41秒前
Chnimike完成签到 ,获得积分10
45秒前
小二郎应助科研通管家采纳,获得10
49秒前
CipherSage应助study666采纳,获得10
52秒前
科研通AI2S应助悦耳人生采纳,获得10
54秒前
我又帅又红又专完成签到,获得积分20
57秒前
Eins完成签到 ,获得积分10
58秒前
huy完成签到 ,获得积分10
1分钟前
阿翼完成签到 ,获得积分10
1分钟前
沐染完成签到,获得积分10
1分钟前
大个应助重要的夏烟采纳,获得10
1分钟前
悦耳人生完成签到,获得积分10
1分钟前
XFaning发布了新的文献求助10
1分钟前
1分钟前
王伟应助MIMI采纳,获得10
1分钟前
1分钟前
study666发布了新的文献求助10
1分钟前
斯文败类应助mikecaicai采纳,获得30
1分钟前
碧蓝的冰绿完成签到,获得积分20
1分钟前
yuwen发布了新的文献求助10
1分钟前
李爱国应助爱撒娇的曼凝采纳,获得10
1分钟前
Lokiki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李健应助XFaning采纳,获得10
1分钟前
小六子完成签到,获得积分10
1分钟前
科研通AI5应助魔幻的雁兰采纳,获得10
1分钟前
1分钟前
1分钟前
领导范儿应助study666采纳,获得10
1分钟前
随便发布了新的文献求助10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513229
关于积分的说明 11166833
捐赠科研通 3248478
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629