CAM‐Wnet: An effective solution for accurate pulmonary embolism segmentation

分割 计算机科学 人工智能 联营 图像分割 棱锥(几何) 肺栓塞 模式识别(心理学) 深度学习 编码器 计算机视觉 医学 心脏病学 数学 几何学 操作系统
作者
Zhenhong Liu,Hongfang Yuan,Huaqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5294-5303 被引量:5
标识
DOI:10.1002/mp.15719
摘要

Abstract Background The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE segmentation is still a challenging task at present. The automatic segmentation of PE is particularly important. On the one hand, manual segmentation of PE from a computed tomography (CT) sequence is very time‐consuming and prone to misdiagnose. On the other hand, an accurate contour of the location, volume, and shape of PE can help radiotherapists carry out targeted treatment and thus greatly increase the survival rate of patients. Therefore, developing an automatic and efficient PE segmentation approach is an urgent demand in clinical diagnosis. Purpose An accurate segmentation of PE is critical for the diagnosis of PE. However, it remains a difficult and relevant problem in the field of medical image processing due to factors like incongruent sizes and shapes of emboli regions, and low contrast between embolisms and other tissues. To address this conundrum, in this study, a deep neural network (CAM‐Wnet) that incorporates coordinate attention (CA) mechanisms and pyramid pooling modules (PPMs) is proposed to end‐to‐end segment PE from CT image. Methods CAM‐Wnet architecture is composed of coarse U‐Net and subdivision U‐Net stacked on top of each other. First, the coarse U‐Net uses a pretrained VGG‐19 as an encoder, which can transfer the features learned from ImageNet to other tasks. At the same time, CA residual blocks (CARBs) are introduced into the decoder of the coarse network to obtain a wider range of semantic information and find out the correlation between channels. Then, the multiplied results of input image and preliminary mask are put into the subdivision U‐Net for secondary feature distillation, and the encoder and decoder of the subdivision U‐Net are both constructed from CARBs, too. The PPMs are used between the encoder and the decoder of two U‐Net architectures to utilize global context information and further enhance the feature extraction effect. Finally, the improved focal loss function is used to train the network to further improve the segmentation effect. Results In this study, we used the doctors’ manual contours of the China‐Japan Friendship Hospital dataset to test the proposed architecture. We calculated the Precision, Recall, IoU, and F 1‐score to evaluate the accuracy of the architecture for PE segmentation. The segmentation Precision for PE was found to be 0.9703, Recall was 0.963, IoU was 0.9353, and F 1‐score was 0.9665. The experimental results show the effectiveness of the proposed method to automatically and accurately segment embolism in lung CT images. Furthermore, we also test the performance of our method on the liver tumor segmentation public dataset, which demonstrates the effectiveness and generalization ability of our method. Conclusions CAM‐Wnet obtained more global information and semantic information with the introduction of multiscale pooling and attention mechanisms. Experimental results showed that the proposed method effectively improved the segmentation effect of PE in lung CT images and could be applied to assist doctors in clinical treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kelsey完成签到 ,获得积分10
刚刚
哈哈哈发布了新的文献求助10
刚刚
刚刚
辛勤凝丝发布了新的文献求助10
1秒前
wssamuel完成签到 ,获得积分10
2秒前
zzzzz完成签到,获得积分10
2秒前
2秒前
水穷云起完成签到,获得积分10
2秒前
2秒前
科研通AI6应助YE采纳,获得10
5秒前
赘婿应助杜小宝采纳,获得10
6秒前
府于杰发布了新的文献求助10
7秒前
TYF发布了新的文献求助10
7秒前
cpl完成签到,获得积分20
7秒前
落后的难胜完成签到 ,获得积分10
8秒前
陈肖楠完成签到,获得积分10
8秒前
qsmei2020发布了新的文献求助10
9秒前
9秒前
梁正凤发布了新的文献求助10
10秒前
夜琉璃应助辛勤凝丝采纳,获得10
10秒前
夜包子123完成签到,获得积分10
11秒前
乐此不疲的猪完成签到,获得积分10
11秒前
WGS发布了新的文献求助10
13秒前
Ava应助哈哈哈采纳,获得10
13秒前
16秒前
中国大陆完成签到,获得积分10
16秒前
洋子完成签到 ,获得积分10
18秒前
20秒前
娜娜子完成签到 ,获得积分10
20秒前
Lucas应助JIANG0710采纳,获得10
21秒前
踏实亦玉完成签到 ,获得积分20
23秒前
暴躁的念之完成签到 ,获得积分10
24秒前
灵巧蓉完成签到,获得积分10
25秒前
26秒前
HJJHJH发布了新的文献求助10
27秒前
张少斌完成签到,获得积分20
27秒前
平常的问雁完成签到 ,获得积分10
29秒前
lulu发布了新的文献求助10
30秒前
30秒前
NexusExplorer应助飞流直下采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565407
求助须知:如何正确求助?哪些是违规求助? 4650389
关于积分的说明 14691103
捐赠科研通 4592283
什么是DOI,文献DOI怎么找? 2519578
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199