CAM‐Wnet: An effective solution for accurate pulmonary embolism segmentation

分割 计算机科学 人工智能 联营 图像分割 棱锥(几何) 肺栓塞 模式识别(心理学) 深度学习 编码器 计算机视觉 医学 心脏病学 数学 几何学 操作系统
作者
Zhenhong Liu,Hongfang Yuan,Huaqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5294-5303 被引量:5
标识
DOI:10.1002/mp.15719
摘要

Abstract Background The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE segmentation is still a challenging task at present. The automatic segmentation of PE is particularly important. On the one hand, manual segmentation of PE from a computed tomography (CT) sequence is very time‐consuming and prone to misdiagnose. On the other hand, an accurate contour of the location, volume, and shape of PE can help radiotherapists carry out targeted treatment and thus greatly increase the survival rate of patients. Therefore, developing an automatic and efficient PE segmentation approach is an urgent demand in clinical diagnosis. Purpose An accurate segmentation of PE is critical for the diagnosis of PE. However, it remains a difficult and relevant problem in the field of medical image processing due to factors like incongruent sizes and shapes of emboli regions, and low contrast between embolisms and other tissues. To address this conundrum, in this study, a deep neural network (CAM‐Wnet) that incorporates coordinate attention (CA) mechanisms and pyramid pooling modules (PPMs) is proposed to end‐to‐end segment PE from CT image. Methods CAM‐Wnet architecture is composed of coarse U‐Net and subdivision U‐Net stacked on top of each other. First, the coarse U‐Net uses a pretrained VGG‐19 as an encoder, which can transfer the features learned from ImageNet to other tasks. At the same time, CA residual blocks (CARBs) are introduced into the decoder of the coarse network to obtain a wider range of semantic information and find out the correlation between channels. Then, the multiplied results of input image and preliminary mask are put into the subdivision U‐Net for secondary feature distillation, and the encoder and decoder of the subdivision U‐Net are both constructed from CARBs, too. The PPMs are used between the encoder and the decoder of two U‐Net architectures to utilize global context information and further enhance the feature extraction effect. Finally, the improved focal loss function is used to train the network to further improve the segmentation effect. Results In this study, we used the doctors’ manual contours of the China‐Japan Friendship Hospital dataset to test the proposed architecture. We calculated the Precision, Recall, IoU, and F 1‐score to evaluate the accuracy of the architecture for PE segmentation. The segmentation Precision for PE was found to be 0.9703, Recall was 0.963, IoU was 0.9353, and F 1‐score was 0.9665. The experimental results show the effectiveness of the proposed method to automatically and accurately segment embolism in lung CT images. Furthermore, we also test the performance of our method on the liver tumor segmentation public dataset, which demonstrates the effectiveness and generalization ability of our method. Conclusions CAM‐Wnet obtained more global information and semantic information with the introduction of multiscale pooling and attention mechanisms. Experimental results showed that the proposed method effectively improved the segmentation effect of PE in lung CT images and could be applied to assist doctors in clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘雾发布了新的文献求助10
刚刚
1秒前
一一发布了新的文献求助20
1秒前
1秒前
Aixia完成签到 ,获得积分10
2秒前
葡萄糖完成签到,获得积分10
2秒前
哈哈完成签到,获得积分10
2秒前
在水一方应助CC采纳,获得10
2秒前
2秒前
余笙完成签到 ,获得积分10
3秒前
神勇的雅香应助科研混子采纳,获得10
3秒前
TT发布了新的文献求助10
4秒前
李顺完成签到,获得积分20
5秒前
ayin发布了新的文献求助10
5秒前
wait发布了新的文献求助10
5秒前
我是站长才怪应助xg采纳,获得10
6秒前
童话艺术佳完成签到,获得积分10
6秒前
稀罕你完成签到,获得积分10
6秒前
junzilan发布了新的文献求助10
6秒前
anny.white完成签到,获得积分10
7秒前
科研通AI5应助平常的毛豆采纳,获得10
9秒前
SciGPT应助paul采纳,获得10
12秒前
14秒前
英姑应助书生采纳,获得10
15秒前
科研钓鱼佬完成签到,获得积分10
16秒前
18秒前
petrichor应助C_Cppp采纳,获得10
18秒前
nan完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
勤恳的雨文完成签到,获得积分10
19秒前
木森ab发布了新的文献求助10
20秒前
paul完成签到,获得积分10
20秒前
小鞋完成签到,获得积分10
21秒前
开心青旋发布了新的文献求助10
21秒前
fztnh发布了新的文献求助10
21秒前
无名花生完成签到 ,获得积分10
21秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824