A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning

非线性系统 应力场 压力(语言学) 领域(数学) 复合材料 有限元法 结构工程 材料科学 工程类 数学 物理 语言学 量子力学 哲学 纯数学
作者
Reza Sepasdar,Anuj Karpatne,Maryam Shakiba
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:397: 115126-115126 被引量:77
标识
DOI:10.1016/j.cma.2022.115126
摘要

An image-based deep learning framework is developed to predict nonlinear stress distribution and failure pattern in microstructural representations of composite materials in this paper. The work is motivated by the complexity and computational cost of high-fidelity simulations of such materials. The proposed deep learning framework predicts the post-failure full-field stress distribution and the crack pattern in two-dimensional representations of the composites based on their microstructures. The deep learning framework contains two stacked fully-convolutional networks, namely, Generator 1 and Generator 2, trained sequentially. First, Generator 1 learns to translate the microstructural geometry to the full-field post-failure stress distribution. Then, Generator 2 learns to translate the output of Generator 1 to the failure pattern. A physics-informed loss function is also designed and incorporated to further improve the performance of the proposed framework and facilitate the validation process. The material of interest is selected to be a unidirectional carbon fiber-reinforced polymer composite. 4500 microstructural representations are synthetically generated and simulated using an efficient finite element framework to provide a sufficiently large data set for training and validating the deep learning framework. It is shown that the proposed deep learning approach can predict the composites’ post-failure full-field stress distribution and failure pattern, two of the most complex phenomena to simulate in computational solid mechanics, with an impressive accuracy of 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
TheSail发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
jsl发布了新的文献求助10
3秒前
xg完成签到,获得积分20
3秒前
5秒前
5秒前
完美世界应助阿拉善采纳,获得10
5秒前
YW完成签到,获得积分10
5秒前
meng发布了新的文献求助10
5秒前
6秒前
大大怪z发布了新的文献求助10
7秒前
儒雅儒雅完成签到,获得积分0
9秒前
9秒前
学术裁缝完成签到,获得积分10
10秒前
发发扶发布了新的文献求助10
10秒前
hyiyi发布了新的文献求助30
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702