A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
球球完成签到,获得积分10
1秒前
3秒前
潇湘雪月发布了新的文献求助10
3秒前
5秒前
7秒前
大模型应助hello采纳,获得10
7秒前
我爱学习发布了新的文献求助10
7秒前
酷波er应助忐忑的阑香采纳,获得10
8秒前
9秒前
如意枫叶发布了新的文献求助10
10秒前
无花果应助猪猪hero采纳,获得10
15秒前
亮liang发布了新的文献求助10
15秒前
cach完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
棣棣完成签到,获得积分10
16秒前
Paris7k完成签到 ,获得积分10
16秒前
糊涂涂完成签到,获得积分20
17秒前
大个应助Yang采纳,获得10
18秒前
19秒前
王伟涛完成签到,获得积分10
19秒前
21秒前
CipherSage应助如意枫叶采纳,获得10
24秒前
潇湘雪月发布了新的文献求助10
24秒前
斯文败类应助依依采纳,获得10
25秒前
华仔应助健康的老六采纳,获得10
25秒前
25秒前
JamesPei应助豪的花花采纳,获得50
25秒前
CSPC001发布了新的文献求助10
26秒前
27秒前
完美小蘑菇应助hp采纳,获得10
28秒前
hello发布了新的文献求助10
29秒前
32秒前
wwwstt发布了新的文献求助10
33秒前
CodeCraft应助过氧化氢采纳,获得10
35秒前
如意枫叶发布了新的文献求助10
36秒前
面壁思过应助m7m采纳,获得30
38秒前
38秒前
大模型应助猪猪hero采纳,获得10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136