A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤的觅松完成签到,获得积分10
1秒前
1秒前
跳跃的香岚完成签到,获得积分10
2秒前
ccct完成签到,获得积分10
2秒前
早睡不掉头发完成签到,获得积分20
2秒前
浮游应助笑点低从凝采纳,获得10
3秒前
3秒前
wuk悟空完成签到,获得积分20
3秒前
白鹭发布了新的文献求助10
3秒前
追剧狂魔发布了新的文献求助20
3秒前
ljj发布了新的文献求助30
3秒前
4秒前
XXX_Y完成签到 ,获得积分10
4秒前
科研通AI2S应助畅快山兰采纳,获得10
4秒前
仙布着急发布了新的文献求助10
5秒前
5秒前
6秒前
LX完成签到,获得积分10
6秒前
6秒前
甜美的若发布了新的文献求助20
7秒前
深情安青应助skycool采纳,获得20
7秒前
龙加可完成签到,获得积分10
7秒前
7秒前
7秒前
顽石完成签到,获得积分10
8秒前
孙欣莹发布了新的文献求助10
8秒前
852应助WQ采纳,获得10
8秒前
Muti发布了新的文献求助10
9秒前
9秒前
小药童应助苗儿采纳,获得10
10秒前
洁净的诗柳完成签到,获得积分20
10秒前
11秒前
1056720198完成签到 ,获得积分10
11秒前
1111发布了新的文献求助10
11秒前
11秒前
instant发布了新的文献求助10
11秒前
浮游应助852采纳,获得10
12秒前
研友_8oYg4n完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435179
求助须知:如何正确求助?哪些是违规求助? 4547377
关于积分的说明 14207640
捐赠科研通 4467483
什么是DOI,文献DOI怎么找? 2448545
邀请新用户注册赠送积分活动 1439497
关于科研通互助平台的介绍 1416193