A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得30
刚刚
多吃蔬菜应助Skrkk采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
123小马发布了新的文献求助10
刚刚
ding应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
ycw992847127发布了新的文献求助10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得30
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
今后应助科研通管家采纳,获得30
2秒前
蚊蚊爱读书应助周爱李采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
zhuzhu完成签到,获得积分10
2秒前
小徐完成签到,获得积分10
2秒前
Gys072519发布了新的文献求助40
3秒前
归尘应助zz采纳,获得10
3秒前
3秒前
浮游应助杨y采纳,获得10
3秒前
兰金发布了新的文献求助10
4秒前
可爱的函函应助小徐采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668