A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助独特翠丝采纳,获得10
2秒前
3秒前
4秒前
张三完成签到,获得积分10
4秒前
5秒前
温暖火完成签到 ,获得积分10
6秒前
ding应助默默的雁易采纳,获得10
8秒前
小梦完成签到,获得积分10
8秒前
8秒前
大个应助归于晏采纳,获得10
8秒前
墨色完成签到 ,获得积分10
9秒前
华仔应助优秀如雪采纳,获得10
9秒前
不爱吃香菜完成签到,获得积分20
10秒前
10秒前
11秒前
无私夜雪发布了新的文献求助10
11秒前
磁带机完成签到,获得积分10
12秒前
小七发布了新的文献求助10
12秒前
13秒前
体贴山河发布了新的文献求助10
14秒前
英姑应助科研通管家采纳,获得30
14秒前
雨馀云应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
15秒前
明明发布了新的文献求助10
15秒前
小团月完成签到 ,获得积分10
15秒前
Ninjagg完成签到,获得积分10
16秒前
科研通AI2S应助liuzengzhang666采纳,获得10
16秒前
16秒前
17秒前
19秒前
19秒前
20秒前
天天快乐应助hao采纳,获得10
21秒前
天天快乐应助mojomars采纳,获得10
22秒前
22秒前
23秒前
hitagi发布了新的文献求助10
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825