A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助123采纳,获得10
刚刚
天真有邪发布了新的文献求助10
刚刚
刚刚
pp发布了新的文献求助200
1秒前
12完成签到,获得积分10
1秒前
cz完成签到,获得积分10
1秒前
1秒前
lucky完成签到,获得积分10
1秒前
优雅妙松完成签到,获得积分10
1秒前
kingwill发布了新的文献求助30
2秒前
markowits完成签到,获得积分10
2秒前
2秒前
11110发布了新的文献求助20
3秒前
3秒前
RQ完成签到 ,获得积分10
3秒前
QIAN发布了新的文献求助10
3秒前
3秒前
tree发布了新的文献求助10
4秒前
mumuaidafu发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
星球日记发布了新的文献求助10
7秒前
夺将发布了新的文献求助10
7秒前
桐桐应助婷婷婷不停采纳,获得10
8秒前
CR7应助崔崔采纳,获得20
8秒前
ding应助xu采纳,获得10
8秒前
9秒前
9秒前
李健的小迷弟应助Jane采纳,获得10
9秒前
9秒前
9秒前
阿斯顿完成签到,获得积分10
10秒前
10秒前
天真有邪完成签到,获得积分10
10秒前
烂漫百招发布了新的文献求助10
10秒前
liamddd完成签到,获得积分10
11秒前
结实的月光完成签到 ,获得积分10
11秒前
八九发布了新的文献求助10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300