A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助ye采纳,获得10
1秒前
叶箴完成签到,获得积分10
1秒前
1秒前
研友_LMNjkn完成签到 ,获得积分10
1秒前
2秒前
怡然的一斩完成签到,获得积分20
3秒前
研酒生完成签到,获得积分10
3秒前
希望天下0贩的0应助金www采纳,获得10
5秒前
paul完成签到,获得积分10
5秒前
矮小的笑旋完成签到,获得积分10
6秒前
8秒前
小也同学完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
山复尔尔完成签到 ,获得积分10
12秒前
stars发布了新的文献求助20
12秒前
12秒前
慕青应助四夕水窖采纳,获得10
12秒前
安静的筝发布了新的文献求助10
15秒前
研友_Zb1rln发布了新的文献求助10
16秒前
领导范儿应助Alluring采纳,获得10
17秒前
字母哥发布了新的文献求助10
17秒前
嘚儿塔完成签到 ,获得积分10
17秒前
怕黑山柏发布了新的文献求助30
19秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920130
求助须知:如何正确求助?哪些是违规求助? 4191826
关于积分的说明 13019278
捐赠科研通 3962434
什么是DOI,文献DOI怎么找? 2172074
邀请新用户注册赠送积分活动 1189979
关于科研通互助平台的介绍 1098773