A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
排骨饭发布了新的文献求助10
1秒前
思源应助slowpoke采纳,获得10
1秒前
懵懂的妙竹完成签到,获得积分10
2秒前
李健的粉丝团团长应助ZLPY采纳,获得10
2秒前
bkagyin应助albertxin采纳,获得10
2秒前
Zysplus发布了新的文献求助10
3秒前
爆米花应助靖哥哥采纳,获得10
3秒前
4秒前
lunhui6453完成签到 ,获得积分10
4秒前
思源应助dsgvdf采纳,获得10
4秒前
邓肖帅完成签到,获得积分10
4秒前
zike发布了新的文献求助10
4秒前
spc68应助001采纳,获得10
5秒前
尤涅若发布了新的文献求助10
6秒前
lzlz199829完成签到,获得积分10
6秒前
紫熊发布了新的文献求助10
6秒前
6秒前
呆萌发布了新的文献求助10
6秒前
空无完成签到,获得积分10
7秒前
小蚂蚁发布了新的文献求助80
7秒前
7秒前
8秒前
活泼的鸣凤完成签到,获得积分20
10秒前
万能图书馆应助邓肖帅采纳,获得10
10秒前
林知鲸落发布了新的文献求助10
10秒前
handada发布了新的文献求助10
11秒前
LChen完成签到,获得积分10
11秒前
零下一秒完成签到,获得积分10
12秒前
pretty发布了新的文献求助10
12秒前
12秒前
panpan111发布了新的文献求助10
13秒前
霸气鞯发布了新的文献求助10
13秒前
zike完成签到,获得积分10
13秒前
13秒前
零下一秒发布了新的文献求助10
14秒前
励志成为科研大师完成签到,获得积分10
14秒前
浮游应助handada采纳,获得10
16秒前
靖哥哥发布了新的文献求助10
16秒前
科研通AI6应助dakjdia采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075