A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases

医学 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 特发性间质性肺炎 放射科 科恩卡帕 人口 危险系数 比例危险模型 人工智能 内科学 机器学习 计算机科学 环境卫生 置信区间
作者
Taiki Furukawa,Shintaro Oyama,Hideo Yokota,Yasuhiro Kondoh,Kensuke Kataoka,Takeshi Johkoh,Junya Fukuoka,Naozumi Hashimoto,Koji Sakamoto,Yoshimune Shiratori,Yoshinori Hasegawa
出处
期刊:Respirology [Wiley]
卷期号:27 (9): 739-746 被引量:24
标识
DOI:10.1111/resp.14310
摘要

Abstract Background and objective Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non‐invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs. Methods We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non‐invasive findings. Diagnostic accuracy was assessed using five‐fold cross‐validation. Results In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069–3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies. Conclusion Using data from non‐invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助菜花采纳,获得10
刚刚
1秒前
颖火虫发布了新的文献求助10
2秒前
khr完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
英俊的铭应助爱吃马铃薯采纳,获得10
3秒前
自由思枫完成签到,获得积分10
4秒前
古灵井盖完成签到,获得积分10
4秒前
4秒前
5秒前
gaohui8010发布了新的文献求助20
5秒前
今后应助超帅的天曼采纳,获得10
5秒前
无限青柏发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助zj采纳,获得10
6秒前
ding应助仁爱的绿海采纳,获得10
7秒前
bkagyin应助启航采纳,获得10
7秒前
8秒前
琳琳完成签到,获得积分10
8秒前
听花开的声音完成签到,获得积分10
9秒前
zheya完成签到,获得积分20
10秒前
所所应助shun采纳,获得10
11秒前
kb发布了新的文献求助10
11秒前
科目三应助ze采纳,获得10
11秒前
Owen应助jcx采纳,获得10
11秒前
半夏完成签到,获得积分10
12秒前
爱吃马铃薯完成签到,获得积分10
12秒前
12秒前
mdbbs2021发布了新的文献求助20
12秒前
小马甲应助杜丽芳采纳,获得10
13秒前
Daniel2010完成签到,获得积分10
13秒前
hxx完成签到,获得积分10
14秒前
高贵煜祺发布了新的文献求助10
14秒前
14秒前
大模型应助听花开的声音采纳,获得10
15秒前
15秒前
Jasper应助缥缈的友琴采纳,获得10
16秒前
bolunxier完成签到,获得积分10
16秒前
你都至少信我八分吧完成签到 ,获得积分10
17秒前
无情发卡完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002