Ab initio study of intrinsic point defects in germanium sulfide

从头算 硫化物 材料科学 从头算量子化学方法 化学物理 化学 凝聚态物理 计算化学 结晶学 物理 光电子学 冶金 分子 有机化学
作者
Neeraj Mishra,Guy Makov
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:914: 165389-165389 被引量:4
标识
DOI:10.1016/j.jallcom.2022.165389
摘要

The energetic and electronic properties of intrinsic point defects in germanium sulfide (GeS) were studied using first-principles methods. Point defects including single-site (e.g., vacancies, interstitials, and anitisites) and double-site defects (e.g., Schottky defects, Frenkel pairs) were considered. It was found that the lowest formation energy for neutral defects is associated with the Schottky dimer (SD), independent of chemical potentials of the species, and not with vacancies, as previously reported for similar materials like GeSe, SnS and SnSe. Furthermore, SD were studied in these similar materials and found to be energetically more stable than neutral vacancies for GeSe and similarly stable to Sn vacancy defects in SnS and SnSe. Charged states of the defects were considered and found to be energetically preferred over neutral defects. On allowing the defects to charge, Ge2- vacancy (VGe−2) defects were found to be the most stable defects in both Ge-rich and Ge-poor environments; consistent with the experimentally reported nonstoichiometric nature of GeS. Negative formation energies were obtained for Ge vacancies, in both environmental conditions, and thus they are expected to form spontaneously. The electronic structure was affected by the incorporation of point defects. For Ge vacancies, the Fermi level shifted below the valence band maxima (VBM), indicating p-type conductivity in agreement with experimental observations. S vacancies introduced occupied defect states and hybridized with VBM, and the fundamental bandgap was retained, indicating no preferential conductivity. The possibility of doping GeS to obtain n-type conductivity was explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叽里咕噜完成签到 ,获得积分10
刚刚
田様应助zccc采纳,获得10
1秒前
隐形的雁完成签到,获得积分10
1秒前
追寻的秋玲完成签到,获得积分10
2秒前
李繁蕊发布了新的文献求助10
2秒前
3秒前
舒心的紫雪完成签到 ,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
不上课不行完成签到,获得积分10
8秒前
再干一杯完成签到,获得积分10
8秒前
9秒前
汉堡包应助rudjs采纳,获得10
10秒前
10秒前
zsyzxb发布了新的文献求助10
11秒前
东东发布了新的文献求助10
11秒前
zena92发布了新的文献求助10
12秒前
锤子米完成签到,获得积分10
12秒前
12秒前
赤练仙子完成签到,获得积分10
14秒前
MnO2fff应助zsyzxb采纳,获得20
17秒前
kingwill应助zsyzxb采纳,获得20
17秒前
顺利鱼完成签到,获得积分10
18秒前
20秒前
21秒前
Xx.完成签到,获得积分10
22秒前
星辰大海应助内向凌兰采纳,获得10
22秒前
22秒前
wuzhizhiya完成签到,获得积分10
23秒前
24秒前
rudjs发布了新的文献求助10
24秒前
27秒前
Ava应助何糖采纳,获得10
27秒前
桐桐应助美丽的芷烟采纳,获得10
27秒前
野子完成签到,获得积分10
28秒前
情怀应助小D采纳,获得30
29秒前
yuan发布了新的文献求助10
29秒前
berry发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808