A Multi-Objectives Genetic Algorithm Based Predictive Model and Strategy Optimization during SLM Process

过程(计算) 表面粗糙度 遗传算法 材料科学 激光功率缩放 选择性激光熔化 曲面(拓扑) 质量(理念) 表面光洁度 算法 工作(物理) 计算机科学 机械工程 激光器 数学 光学 复合材料 工程类 几何学 机器学习 物理 哲学 操作系统 认识论 微观结构
作者
Qingfeng Xia,Jitai Han
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (13): 4607-4607 被引量:4
标识
DOI:10.3390/ma15134607
摘要

Selective laser melting (SLM) process was optimized in this work using multi-objectives genetic algorithm. Process parameters involved in the printing process have an obvious impact on the quality of the printed parts. As the relationship between process parameters and the quality of different parts are complex, it is quite essential to study the effect of process parameter combination. In this work, the impact of four main process parameters, including defocusing amount, laser power, scan speed and layer thickness, were studied on overhanging surface quality of the parts with different inner structures. A multiple-factor and multiple-level experiment was conducted to establish a prediction model using regression analysis while multi-objective genetic algorithm was also employed here to improve the overhanging surface quality of parts with different inner shapes accordingly. The optimized process parameter combination was also used to print inner structure parts and compared with the prediction results to verify the model we have obtained before. The prediction results revealed that sinking distance and roughness value of the overhanging surface on a square-shape inner structure can reduce to 0.017 mm and 9.0 μm under the optimal process parameters combination, while the sinking distance and roughness value of the overhanging surface on a circle-shape inner structure can decrease to 0.014 mm and 10.7 μm under the optimal process parameters combination respectively. The testing results showed that the error rates of the prediction results were all within 10% in spite of random powder bonding in the printing process, which further proved the reliability of the previous results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智初夏发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
搜集达人应助t250采纳,获得10
1秒前
科研通AI6应助qqesk采纳,获得10
1秒前
finerain7完成签到,获得积分10
2秒前
2秒前
松子完成签到,获得积分10
2秒前
2秒前
袁晓完成签到,获得积分20
2秒前
呼安完成签到,获得积分10
2秒前
可爱的函函应助25_1采纳,获得10
2秒前
yihongyuan发布了新的文献求助10
3秒前
独特凡松完成签到,获得积分10
3秒前
浮游应助戚小采纳,获得10
3秒前
4秒前
光亮天蓉发布了新的文献求助10
4秒前
333关注了科研通微信公众号
4秒前
5秒前
Hairee发布了新的文献求助10
5秒前
善良的海亦完成签到,获得积分10
6秒前
顺心的觅荷完成签到 ,获得积分10
7秒前
可爱的静芙完成签到,获得积分10
7秒前
orixero应助机智初夏采纳,获得10
8秒前
ISTSAD完成签到,获得积分20
8秒前
chhe发布了新的文献求助10
9秒前
10秒前
AHA发布了新的文献求助20
11秒前
852应助光亮天蓉采纳,获得10
11秒前
华仔应助夏夏采纳,获得10
11秒前
佳佳发布了新的文献求助30
12秒前
13秒前
mkmimii发布了新的文献求助10
13秒前
桐桐应助DTS采纳,获得10
13秒前
13秒前
单纯芸遥给单纯芸遥的求助进行了留言
13秒前
haonanchen发布了新的文献求助10
14秒前
JamesPei应助玲儿采纳,获得10
14秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800