A Multi-Objectives Genetic Algorithm Based Predictive Model and Strategy Optimization during SLM Process

过程(计算) 表面粗糙度 遗传算法 材料科学 激光功率缩放 选择性激光熔化 曲面(拓扑) 质量(理念) 表面光洁度 算法 工作(物理) 计算机科学 机械工程 激光器 数学 光学 复合材料 工程类 几何学 机器学习 哲学 物理 操作系统 认识论 微观结构
作者
Qingfeng Xia,Jitai Han
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (13): 4607-4607 被引量:4
标识
DOI:10.3390/ma15134607
摘要

Selective laser melting (SLM) process was optimized in this work using multi-objectives genetic algorithm. Process parameters involved in the printing process have an obvious impact on the quality of the printed parts. As the relationship between process parameters and the quality of different parts are complex, it is quite essential to study the effect of process parameter combination. In this work, the impact of four main process parameters, including defocusing amount, laser power, scan speed and layer thickness, were studied on overhanging surface quality of the parts with different inner structures. A multiple-factor and multiple-level experiment was conducted to establish a prediction model using regression analysis while multi-objective genetic algorithm was also employed here to improve the overhanging surface quality of parts with different inner shapes accordingly. The optimized process parameter combination was also used to print inner structure parts and compared with the prediction results to verify the model we have obtained before. The prediction results revealed that sinking distance and roughness value of the overhanging surface on a square-shape inner structure can reduce to 0.017 mm and 9.0 μm under the optimal process parameters combination, while the sinking distance and roughness value of the overhanging surface on a circle-shape inner structure can decrease to 0.014 mm and 10.7 μm under the optimal process parameters combination respectively. The testing results showed that the error rates of the prediction results were all within 10% in spite of random powder bonding in the printing process, which further proved the reliability of the previous results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heavennew完成签到,获得积分10
刚刚
1秒前
眼睛大樱桃完成签到,获得积分10
1秒前
Yuantian发布了新的文献求助10
2秒前
学吗你完成签到 ,获得积分10
2秒前
御青白少发布了新的文献求助10
3秒前
无尽夏完成签到,获得积分10
3秒前
Rylee发布了新的文献求助10
5秒前
5秒前
无私的念文完成签到 ,获得积分10
6秒前
充电宝应助Yuantian采纳,获得10
7秒前
水水完成签到,获得积分10
8秒前
sskr发布了新的文献求助10
8秒前
15327432191完成签到 ,获得积分10
9秒前
酷波er应助果汁采纳,获得10
9秒前
善学以致用应助程公子采纳,获得10
9秒前
海阔天空发布了新的文献求助10
9秒前
ChemistryZyh完成签到,获得积分10
10秒前
wensir完成签到,获得积分10
12秒前
斯文败类应助Rylee采纳,获得10
13秒前
养不熟的野猫完成签到,获得积分10
13秒前
sskr完成签到,获得积分10
13秒前
高文强完成签到,获得积分10
14秒前
15秒前
我是老大应助liu采纳,获得10
15秒前
领导范儿应助小熊软糖采纳,获得10
15秒前
华仔应助kevin采纳,获得10
16秒前
17秒前
18秒前
晴朗葡萄发布了新的文献求助30
18秒前
bkagyin应助冷艳的冬萱采纳,获得10
18秒前
19秒前
文献啊文献完成签到,获得积分10
20秒前
御青白少完成签到,获得积分10
21秒前
晨晨完成签到 ,获得积分10
21秒前
Christ发布了新的文献求助20
21秒前
大方的若山完成签到,获得积分10
21秒前
董啊发布了新的文献求助10
21秒前
Wayne发布了新的文献求助10
22秒前
slby完成签到 ,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048