A Multi-Objectives Genetic Algorithm Based Predictive Model and Strategy Optimization during SLM Process

过程(计算) 表面粗糙度 遗传算法 材料科学 激光功率缩放 选择性激光熔化 质量(理念) 表面光洁度 实验设计 算法 计算机科学 激光器 数学 光学 复合材料 机器学习 统计 认识论 操作系统 物理 哲学 微观结构
作者
Qingfeng Xia,Jitai Han
出处
期刊:Materials [MDPI AG]
卷期号:15 (13): 4607-4607
标识
DOI:10.3390/ma15134607
摘要

Selective laser melting (SLM) process was optimized in this work using multi-objectives genetic algorithm. Process parameters involved in the printing process have an obvious impact on the quality of the printed parts. As the relationship between process parameters and the quality of different parts are complex, it is quite essential to study the effect of process parameter combination. In this work, the impact of four main process parameters, including defocusing amount, laser power, scan speed and layer thickness, were studied on overhanging surface quality of the parts with different inner structures. A multiple-factor and multiple-level experiment was conducted to establish a prediction model using regression analysis while multi-objective genetic algorithm was also employed here to improve the overhanging surface quality of parts with different inner shapes accordingly. The optimized process parameter combination was also used to print inner structure parts and compared with the prediction results to verify the model we have obtained before. The prediction results revealed that sinking distance and roughness value of the overhanging surface on a square-shape inner structure can reduce to 0.017 mm and 9.0 μm under the optimal process parameters combination, while the sinking distance and roughness value of the overhanging surface on a circle-shape inner structure can decrease to 0.014 mm and 10.7 μm under the optimal process parameters combination respectively. The testing results showed that the error rates of the prediction results were all within 10% in spite of random powder bonding in the printing process, which further proved the reliability of the previous results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助小至采纳,获得10
1秒前
希望天下0贩的0应助QxQMDR采纳,获得30
1秒前
善学以致用应助淳之风采纳,获得10
2秒前
2秒前
碎碎完成签到,获得积分10
2秒前
3秒前
Hhhhh完成签到,获得积分10
5秒前
123完成签到,获得积分10
7秒前
小泉完成签到,获得积分10
7秒前
陈y发布了新的文献求助10
7秒前
烤乳朱发布了新的文献求助10
9秒前
10秒前
bzc229完成签到,获得积分10
11秒前
12秒前
愉快捕完成签到,获得积分10
13秒前
科研通AI2S应助Oz采纳,获得10
13秒前
愉快捕发布了新的文献求助10
16秒前
19秒前
W查查发布了新的文献求助10
20秒前
缓慢谷雪发布了新的文献求助10
24秒前
waiwai完成签到,获得积分20
25秒前
25秒前
25秒前
26秒前
我是老大应助舒心傲易采纳,获得10
29秒前
waiwai发布了新的文献求助10
29秒前
W查查完成签到,获得积分10
30秒前
ww完成签到,获得积分10
32秒前
33秒前
乐乐应助外向的惜珊采纳,获得10
33秒前
郑志凡完成签到 ,获得积分10
35秒前
36秒前
Bismarck发布了新的文献求助10
37秒前
setmefree发布了新的文献求助10
37秒前
yys完成签到 ,获得积分10
37秒前
xml发布了新的文献求助30
37秒前
Vincent完成签到 ,获得积分10
38秒前
李lll发布了新的文献求助10
42秒前
留胡子的霖应助linmu采纳,获得10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194