过程(计算)
表面粗糙度
遗传算法
材料科学
激光功率缩放
选择性激光熔化
质量(理念)
表面光洁度
实验设计
算法
计算机科学
激光器
数学
光学
复合材料
机器学习
统计
认识论
操作系统
物理
哲学
微观结构
作者
Qingfeng Xia,Jitai Han
出处
期刊:Materials
[MDPI AG]
日期:2022-06-30
卷期号:15 (13): 4607-4607
摘要
Selective laser melting (SLM) process was optimized in this work using multi-objectives genetic algorithm. Process parameters involved in the printing process have an obvious impact on the quality of the printed parts. As the relationship between process parameters and the quality of different parts are complex, it is quite essential to study the effect of process parameter combination. In this work, the impact of four main process parameters, including defocusing amount, laser power, scan speed and layer thickness, were studied on overhanging surface quality of the parts with different inner structures. A multiple-factor and multiple-level experiment was conducted to establish a prediction model using regression analysis while multi-objective genetic algorithm was also employed here to improve the overhanging surface quality of parts with different inner shapes accordingly. The optimized process parameter combination was also used to print inner structure parts and compared with the prediction results to verify the model we have obtained before. The prediction results revealed that sinking distance and roughness value of the overhanging surface on a square-shape inner structure can reduce to 0.017 mm and 9.0 μm under the optimal process parameters combination, while the sinking distance and roughness value of the overhanging surface on a circle-shape inner structure can decrease to 0.014 mm and 10.7 μm under the optimal process parameters combination respectively. The testing results showed that the error rates of the prediction results were all within 10% in spite of random powder bonding in the printing process, which further proved the reliability of the previous results.
科研通智能强力驱动
Strongly Powered by AbleSci AI