亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on intelligent detection of coal gangue based on deep learning

煤矸石 计算机科学 煤矿开采 人工智能 数据集 集合(抽象数据类型) 深度学习 试验装置 模式识别(心理学) 工程类 材料科学 冶金 程序设计语言 废物管理
作者
Yongchao Zhang,Jianshi Wang,Zhiwei Yu,Shuai Zhao,Guangxia Bei
出处
期刊:Measurement [Elsevier]
卷期号:198: 111415-111415 被引量:24
标识
DOI:10.1016/j.measurement.2022.111415
摘要

In this paper, YOLOv4 algorithm based on deep learning is used to detect coal gangue. Firstly, the data set of coal gangue was made, which provides sufficient data for the training and verification of the detection algorithm model. Then, the coal gangue data set was used to test the influence of the combined use of optimization methods on the YOLOv4 detection algorithm. Finally, the performance of YOLOv4, SSD and Faster R-CNN detection algorithms combined with optimization methods in the field of coal gangue detection was compared through the coal gangue test data sets and the detection experiments. According to the coal gangue test data sets and coal gangue detection experiments, the combined use of optimization methods results in the mAP value of the YOLOv4 detection algorithm reaching 97.52%, which is 40.70% and 43.81% higher than those of the SSD and Faster R-CNN detection algorithms, respectively. Moreover, the accuracy, recall rate, and real-time performance of the YOLOv4 detection algorithm with the optimization methods are also better than those of the SSD and Faster R-CNN detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
CodeCraft应助zzzz采纳,获得10
5秒前
H4ppy_n3w_y34r完成签到,获得积分10
5秒前
6秒前
Ghiocel完成签到,获得积分10
7秒前
9秒前
llpj完成签到,获得积分10
10秒前
10秒前
12秒前
13秒前
自信寻真发布了新的文献求助20
13秒前
甜蜜舞蹈完成签到 ,获得积分10
14秒前
zzzz发布了新的文献求助10
17秒前
蛋仔发布了新的文献求助30
20秒前
wwf发布了新的文献求助10
20秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
lin完成签到,获得积分10
25秒前
27秒前
32秒前
wwf完成签到,获得积分20
37秒前
39秒前
42秒前
Skymi发布了新的文献求助10
43秒前
43秒前
Jasper应助GDL采纳,获得10
43秒前
热情的c99发布了新的文献求助10
48秒前
48秒前
英姑应助cxin采纳,获得10
49秒前
pzz发布了新的文献求助10
53秒前
56秒前
59秒前
汉堡包应助自信寻真采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671