Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

全氟辛酸 光催化 均方误差 计算机科学 机器学习 过硫酸盐 初始化 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 环境化学 统计 支持向量机 催化作用 生物化学 程序设计语言
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:: 1-26 被引量:27
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
所所应助sunsunsun采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
whisper应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
whisper应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
Ling发布了新的文献求助10
3秒前
领导范儿应助小石头采纳,获得10
4秒前
5秒前
宇哈哈发布了新的文献求助10
5秒前
6秒前
西宁完成签到 ,获得积分10
6秒前
6秒前
小号发布了新的文献求助10
6秒前
6秒前
花花完成签到 ,获得积分10
7秒前
7秒前
cocopepsi完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
WZH给WZH的求助进行了留言
9秒前
lll发布了新的文献求助10
9秒前
燕十三完成签到,获得积分10
10秒前
10秒前
奔跑发布了新的文献求助30
11秒前
11秒前
11秒前
大大怪发布了新的文献求助10
12秒前
13秒前
樱_花qxy发布了新的文献求助10
14秒前
李健应助宇哈哈采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721