Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Taylor & Francis]
卷期号:66 (2): 687-712 被引量:39
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
唔昂wang发布了新的文献求助20
2秒前
wang发布了新的文献求助10
3秒前
3秒前
3秒前
孤海未蓝发布了新的文献求助10
4秒前
平陵发布了新的文献求助10
4秒前
5秒前
Sunrise完成签到,获得积分10
6秒前
7秒前
Aspirin发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
大力荷花发布了新的文献求助10
10秒前
L.C.发布了新的文献求助10
11秒前
12秒前
充电宝应助躺躺采纳,获得10
14秒前
蘑菇屋应助L.C.采纳,获得10
15秒前
王磊发布了新的文献求助20
18秒前
ding应助平陵采纳,获得10
22秒前
李爱国应助梦灵采纳,获得10
22秒前
隐形曼青应助ylh采纳,获得10
24秒前
孤独的猕猴桃完成签到,获得积分10
25秒前
27秒前
28秒前
BLDC888发布了新的文献求助10
28秒前
刘一安完成签到 ,获得积分10
30秒前
30秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
孙兆杰发布了新的文献求助10
33秒前
123456789发布了新的文献求助10
33秒前
33秒前
33秒前
梦灵发布了新的文献求助10
34秒前
ylh发布了新的文献求助10
35秒前
xiangjun完成签到,获得积分10
35秒前
FashionBoy应助哈哈采纳,获得10
35秒前
Fan_发布了新的文献求助10
38秒前
39秒前
ruochenzu发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309