Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:66 (2): 687-712 被引量:48
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包女士发布了新的文献求助10
刚刚
荆轲刺秦王完成签到 ,获得积分10
刚刚
汐鹿发布了新的文献求助10
刚刚
刚刚
金陵第一大美女完成签到,获得积分10
刚刚
SciGPT应助唐HUGH采纳,获得30
1秒前
李健应助倘若回到最初采纳,获得10
1秒前
sing完成签到,获得积分10
1秒前
尾巴完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
自由马儿发布了新的文献求助10
2秒前
2秒前
lizhiqian2024发布了新的文献求助10
2秒前
慕青应助王金金采纳,获得10
2秒前
彩虹捕手发布了新的文献求助20
2秒前
smottom应助皮皮采纳,获得10
2秒前
杨欢完成签到,获得积分10
2秒前
熬夜波比应助君无邪采纳,获得10
2秒前
mali发布了新的文献求助10
2秒前
xiaofeizhu发布了新的文献求助10
3秒前
云归去发布了新的文献求助10
3秒前
YYY完成签到,获得积分10
3秒前
Liliz发布了新的文献求助10
4秒前
stiger应助美好沂采纳,获得10
4秒前
4秒前
丘比特应助安安采纳,获得10
4秒前
达不溜完成签到,获得积分10
4秒前
nice1025完成签到,获得积分10
5秒前
彭于晏应助SCIER采纳,获得10
5秒前
掸棉花完成签到,获得积分10
5秒前
Sylvia完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
babybao完成签到,获得积分10
5秒前
5秒前
5秒前
ww完成签到,获得积分10
5秒前
星先生完成签到 ,获得积分10
6秒前
6秒前
高敏完成签到 ,获得积分10
6秒前
小小完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665478
求助须知:如何正确求助?哪些是违规求助? 4876942
关于积分的说明 15114156
捐赠科研通 4824747
什么是DOI,文献DOI怎么找? 2582871
邀请新用户注册赠送积分活动 1536832
关于科研通互助平台的介绍 1495350