已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:66 (2): 687-712 被引量:48
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tenacity完成签到,获得积分10
1秒前
飘逸宛丝完成签到,获得积分10
1秒前
科研通AI2S应助xiliyusheng采纳,获得10
2秒前
3秒前
3秒前
linshaoyu完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
莉莉斯完成签到 ,获得积分10
9秒前
修水县1个科研人完成签到 ,获得积分10
9秒前
11秒前
12秒前
15秒前
香蕉觅云应助xxxllllll采纳,获得10
15秒前
16秒前
研友_VZG7GZ应助C_Cppp采纳,获得10
17秒前
Willow完成签到,获得积分10
17秒前
沉默大白菜完成签到,获得积分20
17秒前
吾系渣渣辉完成签到 ,获得积分10
18秒前
优雅的大白菜完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
温婉的凝芙完成签到 ,获得积分10
20秒前
yqt完成签到,获得积分10
21秒前
xie完成签到 ,获得积分10
21秒前
17发布了新的文献求助10
22秒前
22秒前
诺贝尔候选人完成签到 ,获得积分10
23秒前
着急的猴完成签到 ,获得积分10
24秒前
25秒前
25秒前
25秒前
26秒前
浮浮世世发布了新的文献求助60
27秒前
C_Cppp发布了新的文献求助10
28秒前
英勇羿发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049