已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:66 (2): 687-712 被引量:48
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助举人烧烤采纳,获得10
1秒前
lily发布了新的文献求助10
3秒前
王木木完成签到 ,获得积分10
3秒前
爱吃酥饼发布了新的文献求助10
3秒前
田様应助两周前采纳,获得10
5秒前
星辰大海应助ZZ采纳,获得10
5秒前
5秒前
科研通AI6应助如意的沛芹采纳,获得10
6秒前
Lifel完成签到 ,获得积分10
6秒前
TiAmo完成签到 ,获得积分10
7秒前
7秒前
7秒前
归去来兮应助LukeLion采纳,获得10
8秒前
wuyuxuan完成签到 ,获得积分10
9秒前
natmed应助ZYP采纳,获得10
9秒前
小休完成签到 ,获得积分10
11秒前
77完成签到 ,获得积分10
14秒前
秋子骞完成签到 ,获得积分10
16秒前
归无完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
欢呼的惜萱完成签到 ,获得积分10
20秒前
20秒前
maoxinnan完成签到,获得积分20
22秒前
举人烧烤发布了新的文献求助10
22秒前
两周前发布了新的文献求助10
22秒前
混子玉发布了新的文献求助10
22秒前
ybk666完成签到,获得积分10
23秒前
归去来兮应助英勇友绿采纳,获得10
25秒前
maoxinnan发布了新的文献求助10
26秒前
27秒前
虚拟的清炎完成签到 ,获得积分10
29秒前
一枚小豆完成签到,获得积分10
30秒前
YLC完成签到 ,获得积分10
30秒前
30秒前
CodeCraft应助举人烧烤采纳,获得10
32秒前
幼儿园老大完成签到,获得积分10
33秒前
田様应助江江采纳,获得10
35秒前
xiaoweiba完成签到 ,获得积分10
36秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644324
求助须知:如何正确求助?哪些是违规求助? 4763793
关于积分的说明 15024805
捐赠科研通 4802760
什么是DOI,文献DOI怎么找? 2567542
邀请新用户注册赠送积分活动 1525311
关于科研通互助平台的介绍 1484767