Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:66 (2): 687-712 被引量:48
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Wtony完成签到 ,获得积分10
5秒前
serendipity完成签到 ,获得积分10
6秒前
unique完成签到,获得积分10
8秒前
Elytra完成签到,获得积分10
9秒前
jeffrey完成签到,获得积分0
10秒前
李李李完成签到,获得积分10
11秒前
WWL完成签到 ,获得积分10
15秒前
暖暖的禾日完成签到,获得积分10
16秒前
小怪兽完成签到,获得积分10
16秒前
ilk666完成签到,获得积分10
17秒前
元问晴完成签到,获得积分10
18秒前
18秒前
负责以山完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
斗转星移完成签到 ,获得积分10
22秒前
路人完成签到,获得积分0
22秒前
芳菲依旧应助ggp采纳,获得50
24秒前
lili完成签到,获得积分10
25秒前
传奇3应助wave8013采纳,获得10
27秒前
29秒前
zhangshenrong完成签到 ,获得积分10
29秒前
ewind完成签到 ,获得积分10
30秒前
村上春树的摩的完成签到 ,获得积分10
33秒前
危机的夏兰完成签到,获得积分10
33秒前
jz完成签到,获得积分10
34秒前
RandyChen完成签到,获得积分10
34秒前
wweiweili完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
宋艳芳完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
眯眯眼的谷冬完成签到 ,获得积分10
39秒前
冬烜完成签到 ,获得积分10
42秒前
吃吃货完成签到 ,获得积分10
43秒前
11完成签到,获得积分10
45秒前
高挑的金毛完成签到 ,获得积分10
46秒前
负数完成签到,获得积分10
49秒前
快到碗里来完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986