Hierarchical nanostructure of three-dimensional Au/carbon nanotube-graphene foam for high performance lithium metal anode

阳极 材料科学 法拉第效率 石墨烯 锂(药物) 碳纳米管 电化学 纳米技术 电极 化学工程 电流密度 纳米结构 纳米颗粒 阴极 化学 物理化学 内分泌学 工程类 物理 医学 量子力学
作者
Zhenxin Huang,Zixuan Wang,Xinchang Wang,Sen Zhang,Tingting Xu,Zhuangfei Zhang,Jinhao Zang,Dezhi Kong,Xinjian Li,Ye Wang
出处
期刊:Solid State Ionics [Elsevier]
卷期号:380: 115941-115941 被引量:13
标识
DOI:10.1016/j.ssi.2022.115941
摘要

Owing to the large specific capacity and low electrochemical potential, lithium metal anodes have attracted much attentions. However, owing to lithium metal's high reactivity and infinite volume change, the lithium dendrite formation is uncontrollable and even causes serious safety concerns. In this work, three-dimensional (3D) carbon nanotubes-foam graphene (CNT-GF) nanostuctures were synthesized using a chemical vapor deposition approach, followed by sputtering Au nanoparticles (Au NPs) onto CNT-GF surface to prepare Au/CNT-GF hierarchical structure. The lithium metal deposition behavior onto Au/CNT-GF was investigated by in-situ optical microscope characterization, and the current density distribution over the Au/CNT-GF electrode surface was explored by simulation. The electrochemical meaurements show that Au/CNT-GF exhibits excellent performance, including long cycle stability with high Coulombic efficiency (CE). For example, Au/CNT-GF electrode can cycle stably for more than 1100 h with a CE of higher than 99% when evaluated at a current density of 1 mA cm−2 with a capacity of 1 mAh cm−2. It can even stably cycle more than 300 cycles at a high current density of 5 mA cm−2 with 1 mAh cm−2. The results show that the improvement of electrochemical performance is attributed to the 3D structure with large specific surface area and the lithiophilic interface constructed by Au NPs. Finally, a full cell with LiFePO4 (LFP) as cathode and [email protected]/CNT-GF as anode is assembled. After 500 cycles at 100 mA g−1, the full cell can deliver a capacity of 105.8 mAh g−1 with a high capacity retention of 92%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hola完成签到,获得积分10
4秒前
5秒前
11完成签到,获得积分10
6秒前
xh发布了新的文献求助10
8秒前
Carpe47发布了新的文献求助10
9秒前
10秒前
10秒前
Yang应助caidan采纳,获得10
11秒前
刘家翔发布了新的文献求助10
13秒前
13秒前
小常完成签到 ,获得积分10
17秒前
hola发布了新的文献求助10
17秒前
研量发布了新的文献求助10
18秒前
19秒前
嘿哈哈完成签到,获得积分10
20秒前
英姑应助DueR采纳,获得10
22秒前
qiuling完成签到,获得积分10
22秒前
大熊完成签到,获得积分10
22秒前
curtisness应助张恺琦采纳,获得10
23秒前
23秒前
xh完成签到 ,获得积分10
24秒前
一只特立独行的猪完成签到,获得积分10
24秒前
Lucas应助3565采纳,获得10
25秒前
景熙完成签到,获得积分10
25秒前
zho发布了新的文献求助10
26秒前
彭于晏应助啦啦咔嘞采纳,获得10
27秒前
燕子发布了新的文献求助10
28秒前
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
无花果应助初步采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
BareBear应助科研通管家采纳,获得10
30秒前
30秒前
思源应助科研通管家采纳,获得10
30秒前
春国应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
dachengzi完成签到 ,获得积分10
31秒前
xionghetu65发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358641
求助须知:如何正确求助?哪些是违规求助? 2981750
关于积分的说明 8700446
捐赠科研通 2663412
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675116
邀请新用户注册赠送积分活动 666160