Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [Geological Society of America]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助故意的靳采纳,获得50
刚刚
研友_ngkyGn应助Akin采纳,获得10
刚刚
1秒前
双楠应助sunshine采纳,获得10
2秒前
胡航航完成签到,获得积分10
3秒前
hp发布了新的文献求助30
5秒前
yyauthor完成签到,获得积分10
5秒前
Quinna发布了新的文献求助10
7秒前
8秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
cathy-w完成签到,获得积分0
13秒前
Sunnyside发布了新的文献求助10
13秒前
wenxiansci完成签到,获得积分0
14秒前
14秒前
16秒前
嗯嗯完成签到,获得积分10
17秒前
Zsir完成签到,获得积分10
17秒前
完美世界应助酷酷的友灵采纳,获得10
18秒前
英姑应助十九岁的时差采纳,获得10
21秒前
22秒前
ableyy完成签到,获得积分10
22秒前
22秒前
hhhblabla应助等待的花生采纳,获得10
23秒前
寒冷的小chao关注了科研通微信公众号
23秒前
25秒前
李李完成签到 ,获得积分10
25秒前
25秒前
lucy_zi发布了新的文献求助10
27秒前
闪闪w完成签到,获得积分10
28秒前
欣喜沛芹发布了新的文献求助10
29秒前
潇湘雪月发布了新的文献求助10
30秒前
30秒前
完美世界应助Bressanone采纳,获得10
31秒前
34秒前
徐哈哈发布了新的文献求助10
36秒前
38秒前
39秒前
40秒前
研友_VZG7GZ应助欣喜沛芹采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136