亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [GeoScienceWorld]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
西西娃儿发布了新的文献求助10
33秒前
Jie关闭了Jie文献求助
56秒前
李健应助平安喜乐采纳,获得10
1分钟前
1分钟前
1分钟前
Jie驳回了ding应助
1分钟前
西西娃儿发布了新的文献求助10
1分钟前
平安喜乐发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
大个应助动人的尔容采纳,获得10
1分钟前
1分钟前
Jie发布了新的文献求助200
1分钟前
非泥完成签到,获得积分10
2分钟前
Chris完成签到 ,获得积分0
2分钟前
Jie完成签到,获得积分10
2分钟前
wanci应助平安喜乐采纳,获得10
2分钟前
2分钟前
Jie发布了新的文献求助30
2分钟前
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
Hu完成签到,获得积分10
3分钟前
平安喜乐完成签到,获得积分10
3分钟前
3分钟前
Jie发布了新的文献求助30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
英俊的铭应助平安喜乐采纳,获得10
3分钟前
iDong完成签到 ,获得积分10
4分钟前
动人的尔容关注了科研通微信公众号
4分钟前
不去明知山完成签到 ,获得积分10
4分钟前
4分钟前
平安喜乐发布了新的文献求助10
4分钟前
mobei发布了新的文献求助10
4分钟前
天天快乐应助平安喜乐采纳,获得10
4分钟前
4分钟前
4分钟前
平安喜乐发布了新的文献求助10
4分钟前
千堆雪claris完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824