Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [GeoScienceWorld]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
勤奋小懒虫完成签到,获得积分10
1秒前
yuan完成签到 ,获得积分10
1秒前
心驰天外发布了新的文献求助10
1秒前
ZZL发布了新的文献求助10
2秒前
Ninico发布了新的文献求助10
3秒前
米丫丫米发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
穷光蛋发布了新的文献求助10
4秒前
ltutui7完成签到,获得积分10
4秒前
刘均珺关注了科研通微信公众号
4秒前
5秒前
DG完成签到,获得积分10
5秒前
5秒前
zhs发布了新的文献求助10
5秒前
英俊的铭应助到处戳戳采纳,获得10
5秒前
willlee完成签到 ,获得积分10
6秒前
小鸭翅膀完成签到,获得积分20
6秒前
小李发布了新的文献求助10
6秒前
6秒前
今后应助晚若旧采纳,获得10
7秒前
酷波er应助Lucifer采纳,获得10
7秒前
谦谦发布了新的文献求助30
7秒前
7秒前
杙北完成签到 ,获得积分10
8秒前
飞翔的鱼宝应助T拐拐采纳,获得10
8秒前
ltutui7发布了新的文献求助10
8秒前
乐乐应助KM比比采纳,获得10
8秒前
8秒前
大方师关注了科研通微信公众号
9秒前
9秒前
清清发布了新的文献求助10
9秒前
Lucas应助wise111采纳,获得10
10秒前
秦风关注了科研通微信公众号
10秒前
西蘑菇完成签到,获得积分10
10秒前
小蘑菇应助雪雪啊采纳,获得10
10秒前
hhh发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769