Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [GeoScienceWorld]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
3秒前
无心的鲜花关注了科研通微信公众号
3秒前
3秒前
3秒前
3秒前
6秒前
LiuJ发布了新的文献求助10
7秒前
7秒前
cxy完成签到,获得积分10
7秒前
8秒前
任性的小丸子完成签到,获得积分10
8秒前
又欠发布了新的文献求助10
9秒前
AdnanKhan发布了新的文献求助10
9秒前
可耐的远侵完成签到 ,获得积分10
9秒前
liangm7完成签到,获得积分10
9秒前
9秒前
9秒前
侯笑笑发布了新的文献求助10
10秒前
黄浦江完成签到,获得积分10
10秒前
小常完成签到 ,获得积分10
10秒前
危机的盼晴完成签到,获得积分10
12秒前
烟花应助钟情紫色短裤采纳,获得10
12秒前
12秒前
12秒前
12秒前
希望天下0贩的0应助12345采纳,获得10
14秒前
14秒前
keyanzhang完成签到,获得积分10
15秒前
15秒前
风趣之云完成签到 ,获得积分10
15秒前
wanghh发布了新的文献求助10
15秒前
Duomo应助siri1313采纳,获得20
15秒前
15秒前
16秒前
酒酒完成签到,获得积分10
16秒前
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880