Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [GeoScienceWorld]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
DianaLee完成签到 ,获得积分10
8秒前
害羞的雁易完成签到 ,获得积分10
11秒前
yanna完成签到,获得积分10
15秒前
YZY完成签到 ,获得积分10
16秒前
sunny完成签到 ,获得积分10
21秒前
无幻完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
28秒前
LJ_2完成签到 ,获得积分10
29秒前
358489228完成签到,获得积分10
36秒前
芙瑞完成签到 ,获得积分10
41秒前
动听鑫鹏完成签到,获得积分20
41秒前
胡平完成签到,获得积分10
46秒前
47秒前
yunt完成签到 ,获得积分10
47秒前
CY完成签到,获得积分10
50秒前
77完成签到,获得积分10
50秒前
量子星尘发布了新的文献求助10
55秒前
Snoopy发布了新的文献求助10
58秒前
Wang发布了新的文献求助10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
Moto_Fang完成签到 ,获得积分10
1分钟前
xiaodusb完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
草莓熊1215完成签到 ,获得积分10
1分钟前
美满的珠完成签到 ,获得积分10
1分钟前
无语的煜祺完成签到 ,获得积分10
1分钟前
标致小翠完成签到,获得积分10
1分钟前
黄汉良完成签到,获得积分10
1分钟前
Jasper应助冲浪烤冷面采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zl13332完成签到 ,获得积分10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
whitepiece完成签到,获得积分10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
isedu完成签到,获得积分0
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450430
求助须知:如何正确求助?哪些是违规求助? 4558166
关于积分的说明 14265571
捐赠科研通 4481676
什么是DOI,文献DOI怎么找? 2454940
邀请新用户注册赠送积分活动 1445708
关于科研通互助平台的介绍 1421780