Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [GeoScienceWorld]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自由寻冬发布了新的文献求助10
1秒前
小羊发布了新的文献求助10
2秒前
3秒前
Ffffff发布了新的文献求助10
3秒前
李爱国应助zhihaiyu采纳,获得10
3秒前
淡定碧玉完成签到,获得积分10
3秒前
3秒前
orixero应助葛稀采纳,获得10
5秒前
华仔应助yo一天采纳,获得10
5秒前
小翠11完成签到,获得积分10
6秒前
义气的断秋完成签到,获得积分10
6秒前
NicotineZen发布了新的文献求助10
6秒前
玄枵完成签到,获得积分10
7秒前
7秒前
淡定碧玉发布了新的文献求助10
8秒前
9秒前
9秒前
Grace发布了新的文献求助10
10秒前
10秒前
赵哲完成签到 ,获得积分10
10秒前
11秒前
11秒前
lcj1014完成签到,获得积分20
12秒前
12秒前
moyu123发布了新的文献求助10
13秒前
ding应助潇洒的冰淇淋采纳,获得10
13秒前
蛋卷发布了新的文献求助10
13秒前
禾下乘凉发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
隐形曼青应助01采纳,获得10
16秒前
yzt发布了新的文献求助10
16秒前
淡淡尔烟发布了新的文献求助10
16秒前
yep发布了新的文献求助10
17秒前
17秒前
17秒前
sunshine_920完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497