Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [Geological Society of America]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到 ,获得积分10
1秒前
等待的盼波完成签到,获得积分10
1秒前
CAOHOU应助嘟嘟请让一让采纳,获得10
1秒前
1秒前
天天向上完成签到,获得积分10
1秒前
野原小龙虾完成签到,获得积分10
2秒前
time完成签到,获得积分10
2秒前
2秒前
阿绿发布了新的文献求助10
6秒前
7秒前
7秒前
雨柏完成签到 ,获得积分10
7秒前
wanci应助qwe1108采纳,获得10
8秒前
明天过后完成签到,获得积分10
10秒前
jin完成签到,获得积分10
11秒前
yhy完成签到 ,获得积分10
12秒前
黑色卡布奇诺完成签到,获得积分20
12秒前
tanglu发布了新的文献求助10
12秒前
可爱的函函应助梁大海采纳,获得10
12秒前
成就绮琴完成签到 ,获得积分10
13秒前
xicifish完成签到,获得积分10
13秒前
目光之澄完成签到,获得积分10
14秒前
wanci应助研友_ndDPBn采纳,获得10
14秒前
耍酷的白梦完成签到,获得积分10
15秒前
miracle完成签到 ,获得积分10
16秒前
coding完成签到,获得积分10
17秒前
18秒前
犹豫水蓝完成签到,获得积分10
19秒前
yin完成签到,获得积分10
19秒前
JUGG完成签到,获得积分10
19秒前
CipherSage应助阿湫采纳,获得10
20秒前
FIN应助手机采纳,获得20
20秒前
星辰大海应助东黎采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
wujingshuai完成签到,获得积分10
21秒前
少年完成签到,获得积分10
21秒前
星辰大海应助ficus_min采纳,获得10
22秒前
小柒柒完成签到,获得积分10
23秒前
sdfwsdfsd完成签到,获得积分10
24秒前
亮仔完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048