亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [Geological Society of America]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的幼南完成签到 ,获得积分10
11秒前
科研通AI6应助灵巧小鸽子采纳,获得10
29秒前
桐桐应助灵巧小鸽子采纳,获得10
29秒前
32秒前
与心书完成签到,获得积分10
36秒前
39秒前
科研通AI6应助与心书采纳,获得10
40秒前
46秒前
50秒前
ruilong完成签到,获得积分10
51秒前
52秒前
波波完成签到 ,获得积分10
55秒前
洪武完成签到,获得积分10
55秒前
eden发布了新的文献求助10
56秒前
牛肉面完成签到 ,获得积分10
59秒前
59秒前
1分钟前
zhaimen完成签到 ,获得积分10
1分钟前
兜里没糖了完成签到 ,获得积分0
1分钟前
潘道士完成签到 ,获得积分10
1分钟前
噜啦啦完成签到 ,获得积分10
1分钟前
JamesPei应助核桃采纳,获得10
1分钟前
FashionBoy应助核桃采纳,获得30
1分钟前
共享精神应助核桃采纳,获得10
1分钟前
科研通AI6应助核桃采纳,获得10
1分钟前
领导范儿应助核桃采纳,获得10
1分钟前
小二郎应助核桃采纳,获得10
1分钟前
所所应助核桃采纳,获得10
1分钟前
李健的小迷弟应助核桃采纳,获得10
1分钟前
大模型应助核桃采纳,获得10
1分钟前
充电宝应助核桃采纳,获得10
1分钟前
1分钟前
善学以致用应助核桃采纳,获得10
1分钟前
完美世界应助核桃采纳,获得30
1分钟前
xiaolei001应助核桃采纳,获得10
1分钟前
FashionBoy应助核桃采纳,获得30
1分钟前
李健的小迷弟应助核桃采纳,获得50
1分钟前
wanci应助核桃采纳,获得30
1分钟前
天天快乐应助核桃采纳,获得30
1分钟前
Jasper应助核桃采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973594
求助须知:如何正确求助?哪些是违规求助? 4229109
关于积分的说明 13172039
捐赠科研通 4017849
什么是DOI,文献DOI怎么找? 2198553
邀请新用户注册赠送积分活动 1211230
关于科研通互助平台的介绍 1126183