A Real-Time Affective Computing Platform Integrated with AI System-on-Chip Design and Multimodal Signal Processing System

计算机科学 人工智能 信号处理 特征提取 分类器(UML) 可穿戴计算机 芯片上的系统 模式识别(心理学) 数字信号处理 语音识别 嵌入式系统 计算机硬件
作者
Wei-Chih Li,Cheng-Jie Yang,Boting Liu,Wai-Chi Fang
标识
DOI:10.1109/embc46164.2021.9630979
摘要

Recently, deep learning algorithms have been used widely in emotion recognition applications. However, it is difficult to detect human emotions in real-time due to constraints imposed by computing power and convergence latency. This paper proposes a real-time affective computing platform that integrates an AI System-on-Chip (SoC) design and multimodal signal processing systems composed of electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) signals. To extract the emotional features of the EEG, ECG, and PPG signals, we used a short-time Fourier transform (STFT) for the EEG signal and direct extraction using the raw signals for the ECG and PPG signals. The long-term recurrent convolution networks (LRCN) classifier was implemented in an AI SoC design and divided emotions into three classes: happy, angry, and sad. The proposed LRCN classifier reached an average accuracy of 77.41% for cross-subject validation. The platform consists of wearable physiological sensors and multimodal signal processors integrated with the LRCN SoC design. The area of the core and total power consumption of the LRCN chip was 1.13 x 1.14 mm2 and 48.24 mW, respectively. The on-chip training processing time and real-time classification processing time are 5.5 µs and 1.9 µs per sample. The proposed platform displays the classification results of emotion calculation on the graphical user interface (GUI) every one second for real-time emotion monitoring.Clinical relevance- The on-chip training processing time and real-time emotion classification processing time are 5.5 µs and 1.9 µs per sample with EEG, ECG, and PPG signal based on the LRCN model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝世冰淇淋完成签到 ,获得积分10
1秒前
1秒前
完美世界应助whk采纳,获得10
2秒前
3秒前
慕青应助兔子采纳,获得10
5秒前
激情的健柏完成签到 ,获得积分10
5秒前
6秒前
加绒发布了新的文献求助30
7秒前
欢喜的晓霜完成签到 ,获得积分10
8秒前
yyh123发布了新的文献求助10
8秒前
意忆完成签到 ,获得积分10
9秒前
12秒前
滚滚完成签到,获得积分20
12秒前
现代期待完成签到,获得积分10
13秒前
细心难摧完成签到 ,获得积分10
14秒前
14秒前
灵巧夏彤完成签到,获得积分10
16秒前
LS-GENIUS完成签到,获得积分10
16秒前
活泼沫沫完成签到,获得积分10
16秒前
bynowcc完成签到 ,获得积分10
17秒前
pp‘s发布了新的文献求助10
17秒前
陈甜甜关注了科研通微信公众号
18秒前
同福发布了新的文献求助10
19秒前
19秒前
吕文晴发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
小二郎应助哎哟采纳,获得50
25秒前
26秒前
花汀酒完成签到 ,获得积分10
28秒前
28秒前
28秒前
流星雨发布了新的文献求助10
30秒前
脑洞疼应助吕文晴采纳,获得10
31秒前
31秒前
32秒前
sfafasfsdf完成签到,获得积分10
32秒前
阳光的梦寒完成签到 ,获得积分10
33秒前
ye发布了新的文献求助30
34秒前
34秒前
定西完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600701
求助须知:如何正确求助?哪些是违规求助? 4686281
关于积分的说明 14842766
捐赠科研通 4677491
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505853
关于科研通互助平台的介绍 1471229