A Real-Time Affective Computing Platform Integrated with AI System-on-Chip Design and Multimodal Signal Processing System

计算机科学 人工智能 信号处理 特征提取 分类器(UML) 可穿戴计算机 芯片上的系统 模式识别(心理学) 数字信号处理 语音识别 嵌入式系统 计算机硬件
作者
Wei-Chih Li,Cheng-Jie Yang,Boting Liu,Wai-Chi Fang
标识
DOI:10.1109/embc46164.2021.9630979
摘要

Recently, deep learning algorithms have been used widely in emotion recognition applications. However, it is difficult to detect human emotions in real-time due to constraints imposed by computing power and convergence latency. This paper proposes a real-time affective computing platform that integrates an AI System-on-Chip (SoC) design and multimodal signal processing systems composed of electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) signals. To extract the emotional features of the EEG, ECG, and PPG signals, we used a short-time Fourier transform (STFT) for the EEG signal and direct extraction using the raw signals for the ECG and PPG signals. The long-term recurrent convolution networks (LRCN) classifier was implemented in an AI SoC design and divided emotions into three classes: happy, angry, and sad. The proposed LRCN classifier reached an average accuracy of 77.41% for cross-subject validation. The platform consists of wearable physiological sensors and multimodal signal processors integrated with the LRCN SoC design. The area of the core and total power consumption of the LRCN chip was 1.13 x 1.14 mm2 and 48.24 mW, respectively. The on-chip training processing time and real-time classification processing time are 5.5 µs and 1.9 µs per sample. The proposed platform displays the classification results of emotion calculation on the graphical user interface (GUI) every one second for real-time emotion monitoring.Clinical relevance- The on-chip training processing time and real-time emotion classification processing time are 5.5 µs and 1.9 µs per sample with EEG, ECG, and PPG signal based on the LRCN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊羊完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI5应助WNL采纳,获得10
1秒前
Xuu完成签到,获得积分10
1秒前
外向的沅发布了新的文献求助10
1秒前
徐慕源发布了新的文献求助10
1秒前
夏哈哈完成签到 ,获得积分10
2秒前
默默海露完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
迷路安阳发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助Jolene66采纳,获得10
4秒前
医路有你完成签到,获得积分10
4秒前
5秒前
科研通AI5应助Sean采纳,获得10
5秒前
5秒前
超帅连虎完成签到,获得积分10
5秒前
皓月千里发布了新的文献求助10
5秒前
Grayball应助包容的剑采纳,获得10
5秒前
深情安青应助寒冷书竹采纳,获得10
6秒前
wbj0722完成签到,获得积分10
6秒前
JIAO完成签到,获得积分10
6秒前
6秒前
7秒前
852应助HopeStar采纳,获得10
7秒前
圆圆发布了新的文献求助30
8秒前
Orange应助Promise采纳,获得10
8秒前
一直发布了新的文献求助20
8秒前
8秒前
9秒前
乐乐应助JonyiCheng采纳,获得10
9秒前
无聊先知发布了新的文献求助10
9秒前
医路有你发布了新的文献求助10
10秒前
10秒前
10秒前
drizzling发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678