已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Real-Time Affective Computing Platform Integrated with AI System-on-Chip Design and Multimodal Signal Processing System

计算机科学 人工智能 信号处理 特征提取 分类器(UML) 可穿戴计算机 芯片上的系统 模式识别(心理学) 数字信号处理 语音识别 嵌入式系统 计算机硬件
作者
Wei-Chih Li,Cheng-Jie Yang,Boting Liu,Wai-Chi Fang
标识
DOI:10.1109/embc46164.2021.9630979
摘要

Recently, deep learning algorithms have been used widely in emotion recognition applications. However, it is difficult to detect human emotions in real-time due to constraints imposed by computing power and convergence latency. This paper proposes a real-time affective computing platform that integrates an AI System-on-Chip (SoC) design and multimodal signal processing systems composed of electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) signals. To extract the emotional features of the EEG, ECG, and PPG signals, we used a short-time Fourier transform (STFT) for the EEG signal and direct extraction using the raw signals for the ECG and PPG signals. The long-term recurrent convolution networks (LRCN) classifier was implemented in an AI SoC design and divided emotions into three classes: happy, angry, and sad. The proposed LRCN classifier reached an average accuracy of 77.41% for cross-subject validation. The platform consists of wearable physiological sensors and multimodal signal processors integrated with the LRCN SoC design. The area of the core and total power consumption of the LRCN chip was 1.13 x 1.14 mm2 and 48.24 mW, respectively. The on-chip training processing time and real-time classification processing time are 5.5 µs and 1.9 µs per sample. The proposed platform displays the classification results of emotion calculation on the graphical user interface (GUI) every one second for real-time emotion monitoring.Clinical relevance- The on-chip training processing time and real-time emotion classification processing time are 5.5 µs and 1.9 µs per sample with EEG, ECG, and PPG signal based on the LRCN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无误发布了新的文献求助10
刚刚
Z.关闭了Z.文献求助
1秒前
小蘑菇应助娜行采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得30
2秒前
2秒前
jin应助科研通管家采纳,获得20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
2秒前
小鲨发布了新的文献求助10
3秒前
Self-made发布了新的文献求助10
3秒前
SCI的芷蝶发布了新的文献求助10
3秒前
4秒前
5秒前
木子林夕完成签到,获得积分10
5秒前
5秒前
7秒前
文静的立诚完成签到,获得积分10
7秒前
8秒前
alvin完成签到,获得积分10
10秒前
11秒前
米娜发布了新的文献求助30
12秒前
娜行发布了新的文献求助10
13秒前
科研通AI5应助冰之采纳,获得10
16秒前
科研通AI5应助小丸子采纳,获得10
17秒前
HS发布了新的文献求助10
17秒前
24秒前
24秒前
Self-made发布了新的文献求助30
26秒前
30秒前
小丸子发布了新的文献求助10
30秒前
任性的岱周完成签到,获得积分10
37秒前
ding应助alexysw采纳,获得10
39秒前
vnb完成签到,获得积分20
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980513
求助须知:如何正确求助?哪些是违规求助? 3524474
关于积分的说明 11221565
捐赠科研通 3261897
什么是DOI,文献DOI怎么找? 1800958
邀请新用户注册赠送积分活动 879525
科研通“疑难数据库(出版商)”最低求助积分说明 807294