亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Real-Time Affective Computing Platform Integrated with AI System-on-Chip Design and Multimodal Signal Processing System

计算机科学 人工智能 信号处理 特征提取 分类器(UML) 可穿戴计算机 芯片上的系统 模式识别(心理学) 数字信号处理 语音识别 嵌入式系统 计算机硬件
作者
Wei-Chih Li,Cheng-Jie Yang,Boting Liu,Wai-Chi Fang
标识
DOI:10.1109/embc46164.2021.9630979
摘要

Recently, deep learning algorithms have been used widely in emotion recognition applications. However, it is difficult to detect human emotions in real-time due to constraints imposed by computing power and convergence latency. This paper proposes a real-time affective computing platform that integrates an AI System-on-Chip (SoC) design and multimodal signal processing systems composed of electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) signals. To extract the emotional features of the EEG, ECG, and PPG signals, we used a short-time Fourier transform (STFT) for the EEG signal and direct extraction using the raw signals for the ECG and PPG signals. The long-term recurrent convolution networks (LRCN) classifier was implemented in an AI SoC design and divided emotions into three classes: happy, angry, and sad. The proposed LRCN classifier reached an average accuracy of 77.41% for cross-subject validation. The platform consists of wearable physiological sensors and multimodal signal processors integrated with the LRCN SoC design. The area of the core and total power consumption of the LRCN chip was 1.13 x 1.14 mm2 and 48.24 mW, respectively. The on-chip training processing time and real-time classification processing time are 5.5 µs and 1.9 µs per sample. The proposed platform displays the classification results of emotion calculation on the graphical user interface (GUI) every one second for real-time emotion monitoring.Clinical relevance- The on-chip training processing time and real-time emotion classification processing time are 5.5 µs and 1.9 µs per sample with EEG, ECG, and PPG signal based on the LRCN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝猫完成签到 ,获得积分10
1秒前
Zert发布了新的文献求助10
3秒前
13秒前
新xin完成签到,获得积分10
19秒前
29秒前
34秒前
传奇3应助科研通管家采纳,获得20
34秒前
43秒前
爱做实验的泡利完成签到,获得积分10
45秒前
45秒前
mengzhe完成签到,获得积分10
1分钟前
2分钟前
Jean发布了新的文献求助10
2分钟前
美美发布了新的文献求助10
2分钟前
2分钟前
蔡浩天发布了新的文献求助10
2分钟前
小马甲应助Fishchips采纳,获得10
2分钟前
希望天下0贩的0应助Zert采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Fishchips发布了新的文献求助10
2分钟前
2分钟前
Zert发布了新的文献求助10
2分钟前
Jasper应助蔡浩天采纳,获得10
2分钟前
3分钟前
无花果应助Zert采纳,获得10
4分钟前
4分钟前
Takahara2000应助科研通管家采纳,获得10
4分钟前
Zert发布了新的文献求助10
4分钟前
4分钟前
麻花阳完成签到,获得积分10
5分钟前
蓝华完成签到 ,获得积分10
5分钟前
上官若男应助Fishchips采纳,获得10
5分钟前
N_关注了科研通微信公众号
5分钟前
5分钟前
Fishchips发布了新的文献求助10
5分钟前
N_发布了新的文献求助30
5分钟前
5分钟前
Marciu33完成签到,获得积分10
6分钟前
dllneu发布了新的文献求助10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346420
求助须知:如何正确求助?哪些是违规求助? 4481037
关于积分的说明 13947151
捐赠科研通 4378821
什么是DOI,文献DOI怎么找? 2406067
邀请新用户注册赠送积分活动 1398653
关于科研通互助平台的介绍 1371340