材料科学
纳米复合材料
三乙胺
热液循环
纳米技术
化学工程
MXenes公司
有机化学
工程类
化学
作者
Liang Dong,Peng Song,Miao Liu,Qi Wang
标识
DOI:10.1016/j.ceramint.2021.12.089
摘要
Highly active two-dimensional (2D) nanocomposites have been widely concerned in the field of gas sensors because of their unique advantages and synergistic effects. 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites were synthesized by using layered Ti3C2Tx MXene and uniform SnO2 nanosheets by hydrothermal method. Characterization results show that the SnO2 nanosheets are well dispersed and vertically anchored on the layered Ti3C2Tx MXene surface, forming heterogeneous interfaces. Based on the gas-adsorption capabilities and synergistic effects of electronic properties, SnO2 nanosheets/Ti3C2Tx MXene nanocomposites show high triethylamine (TEA) gas-sensing performance at low temperature (140 °C). The sensor responses of the nanocomposites and pure SnO2 nanosheets to 50 ppm of TEA are 33.9 and 3.4, respectively. An enhancement mechanism for SnO2 nanosheets/Ti3C2Tx MXene nanocomposites is proposed for highly sensitive and selective detection of TEA at low temperature. The combination strategy of two-dimensional metal oxide semiconductor and multilayer MXene provides a new way for the development of cryogenic gas sensors in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI