A novel ResNet101 model based on dense dilated convolution for image classification

计算机科学 特征提取 人工智能 模式识别(心理学) 卷积(计算机科学) 特征(语言学) 卷积神经网络 背景(考古学) 光学(聚焦) 残余物 噪音(视频) 比例(比率) 上下文图像分类 人工神经网络 图像(数学) 算法 生物 光学 物理 哲学 古生物学 量子力学 语言学
作者
Qi Zhang
出处
期刊:SN applied sciences [Springer Nature]
卷期号:4 (1) 被引量:66
标识
DOI:10.1007/s42452-021-04897-7
摘要

Abstract Image classification plays an important role in computer vision. The existing convolutional neural network methods have some problems during image classification process, such as low accuracy of tumor classification and poor ability of feature expression and feature extraction. Therefore, we propose a novel ResNet101 model based on dense dilated convolution for medical liver tumors classification. The multi-scale feature extraction module is used to extract multi-scale features of images, and the receptive field of the network is increased. The depth feature extraction module is used to reduce background noise information and focus on effective features of the focal region. To obtain broader and deeper semantic information, a dense dilated convolution module is deployed in the network. This module combines the advantages of Inception, residual structure, and multi-scale dilated convolution to obtain a deeper level of feature information without causing gradient explosion and gradient disappearance. To solve the common feature loss problems in the classification network, the up- down-sampling module in the network is improved, and multiple convolution kernels with different scales are cascaded to widen the network, which can effectively avoid feature loss. Finally, experiments are carried out on the proposed method. Compared with the existing mainstream classification networks, the proposed method can improve the classification performance, and finally achieve accurate classification of liver tumors. The effectiveness of the proposed method is further verified by ablation experiments. Highlights The multi-scale feature extraction module is introduced to extract multi-scale features of images, it can extract deep context information of the lesion region and surrounding tissues to enhance the feature extraction ability of the network. The depth feature extraction module is used to focus on the local features of the lesion region from both channel and space, weaken the influence of irrelevant information, and strengthen the recognition ability of the lesion region. The feature extraction module is enhanced by the parallel structure of dense dilated convolution, and the deeper feature information is obtained without losing the image feature information to improve the classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充满怪兽的世界完成签到,获得积分10
1秒前
疯狂的青亦完成签到,获得积分10
1秒前
文子完成签到,获得积分10
1秒前
喜悦芝麻完成签到 ,获得积分10
2秒前
傻傻的仙人掌完成签到,获得积分10
3秒前
单纯的小土豆完成签到,获得积分10
4秒前
猪猪侠完成签到,获得积分10
4秒前
justonce完成签到,获得积分10
5秒前
失眠的哈密瓜完成签到,获得积分10
5秒前
快乐寄风完成签到 ,获得积分10
7秒前
whitepiece完成签到,获得积分10
7秒前
cmy完成签到,获得积分10
7秒前
yydsyyd完成签到 ,获得积分10
7秒前
9秒前
shuaishuyi发布了新的文献求助10
10秒前
一剑温柔完成签到 ,获得积分10
11秒前
SHzheng完成签到,获得积分10
12秒前
haipronl完成签到,获得积分10
12秒前
小白应助沉默的婴采纳,获得20
14秒前
haipronl发布了新的文献求助10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
顺心香菇应助科研通管家采纳,获得30
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
wubinbin完成签到 ,获得积分10
16秒前
我是125完成签到,获得积分10
16秒前
17秒前
18秒前
科研通AI2S应助萧水白采纳,获得10
18秒前
Ayaya发布了新的文献求助10
20秒前
充电宝应助shuaishuyi采纳,获得10
20秒前
ab完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761094
求助须知:如何正确求助?哪些是违规求助? 3305015
关于积分的说明 10131717
捐赠科研通 3018946
什么是DOI,文献DOI怎么找? 1657871
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604