Texture Features of Magnetic Resonance Images Predict Poststroke Cognitive Impairment: Validation in a Multicenter Study

医学 随机森林 磁共振成像 认知 模式识别(心理学) 认知障碍 人工智能 峰度 统计 计算机科学 放射科 数学 精神科
作者
Nacim Betrouni,Jiyang Jiang,Marco Duering,Marios K. Georgakis,Lena Oestreich,Perminder S. Sachdev,Michael O'Sullivan,Paul Wright,Jessica Lo,Régis Bordet
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:53 (11): 3446-3454 被引量:2
标识
DOI:10.1161/strokeaha.122.039732
摘要

Background: Imaging features derived from T1-weighted (T1w) images texture analysis were shown to be potential markers of poststroke cognitive impairment, with better sensitivity than atrophy measurement. However, in magnetic resonance images, the signal distribution is subject to variations and can limit transferability of the method between centers. This study examined the reliability of texture features against imaging settings using data from different centers. Methods: Data were collected from 327 patients within the Stroke and Cognition Consortium from centers in France, Germany, Australia, and the United Kingdom. T1w images were preprocessed to normalize the signal intensities and then texture features, including first- and second-order statistics, were measured in the hippocampus and the entorhinal cortex. Differences between the data led to the use of 2 methods of analysis. First, a machine learning modeling, using random forest, was used to build a poststroke cognitive impairment prediction model using one dataset and this was validated on another dataset as external unseen data. Second, the predictive ability of the texture features was examined in the 2 remaining datasets by ANCOVA with false discovery rate correction for multiple comparisons. Results: The prediction model had a mean accuracy of 90% for individual classification of patients in the learning base while for the validation base it was ≈ 77%. ANCOVA showed significant differences, in all datasets, for the kurtosis and inverse difference moment texture features when measured in patients with cognitive impairment and those without. Conclusions: These results suggest that texture features obtained from routine clinical MR images are robust early predictors of poststroke cognitive impairment and can be combined with other demographic and clinical predictors to build an accurate prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
hahahayi发布了新的文献求助10
3秒前
4秒前
4秒前
貔貅完成签到,获得积分10
6秒前
NY发布了新的文献求助10
6秒前
李爱国应助Bminor采纳,获得10
7秒前
sk夏冰发布了新的文献求助10
7秒前
complex发布了新的文献求助20
8秒前
hahahayi完成签到,获得积分10
8秒前
8秒前
yuiii完成签到,获得积分10
9秒前
lilyyan完成签到,获得积分10
9秒前
LYB吕发布了新的文献求助10
10秒前
10秒前
10秒前
tym完成签到,获得积分10
11秒前
fenghfly发布了新的文献求助10
14秒前
lilyyan发布了新的文献求助10
14秒前
科研通AI5应助YOGA1115采纳,获得10
15秒前
苦练气功很多年完成签到,获得积分20
16秒前
16秒前
哈哈哈哈哈哈完成签到,获得积分20
18秒前
19秒前
大模型应助鸵鸟采纳,获得10
20秒前
zho应助卷卷516采纳,获得10
21秒前
田様应助安妮采纳,获得10
23秒前
阿桂发布了新的文献求助10
23秒前
苦练气功很多年关注了科研通微信公众号
27秒前
dudu关注了科研通微信公众号
27秒前
27秒前
一一应助snowball采纳,获得10
28秒前
Cui应助科研通管家采纳,获得10
30秒前
A1len完成签到 ,获得积分10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
31秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715241
求助须知:如何正确求助?哪些是违规求助? 3262228
关于积分的说明 9923167
捐赠科研通 2975990
什么是DOI,文献DOI怎么找? 1632026
邀请新用户注册赠送积分活动 774279
科研通“疑难数据库(出版商)”最低求助积分说明 744803