Multi-Attribute Attention Network for Interpretable Diagnosis of Thyroid Nodules in Ultrasound Images

计算机科学 甲状腺结节 背景(考古学) 人工智能 恶性肿瘤 过程(计算) 机器学习 结核(地质) 医学 病理 生物 操作系统 古生物学
作者
Van Manh,JianQiao Zhou,Xiaohong Jia,Zehui Lin,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,Ruobing Huang,Dong Ni
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 2611-2620 被引量:17
标识
DOI:10.1109/tuffc.2022.3190012
摘要

Ultrasound (US) is the primary imaging technique for the diagnosis of thyroid cancer. However, accurate identification of nodule malignancy is a challenging task that can elude less-experienced clinicians. Recently, many computer-aided diagnosis (CAD) systems have been proposed to assist this process. However, most of them do not provide the reasoning of their classification process, which may jeopardize their credibility in practical use. To overcome this, we propose a novel deep learning (DL) framework called multi-attribute attention network (MAA-Net) that is designed to mimic the clinical diagnosis process. The proposed model learns to predict nodular attributes and infer their malignancy based on these clinically-relevant features. A multi-attention scheme is adopted to generate customized attention to improve each task and malignancy diagnosis. Furthermore, MAA-Net utilizes nodule delineations as nodules spatial prior guidance for the training rather than cropping the nodules with additional models or human interventions to prevent losing the context information. Validation experiments were performed on a large and challenging dataset containing 4554 patients. Results show that the proposed method outperformed other state-of-the-art methods and provides interpretable predictions that may better suit clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_IEEE快到碗里来完成签到,获得积分10
1秒前
哈哈大笑应助吴岳采纳,获得10
1秒前
1秒前
酷炫中蓝完成签到,获得积分10
1秒前
早川完成签到 ,获得积分10
2秒前
拼搏语薇完成签到,获得积分10
2秒前
科研通AI5应助SCI采纳,获得10
3秒前
dling02完成签到 ,获得积分10
3秒前
3秒前
是天使呢完成签到,获得积分10
3秒前
4秒前
4秒前
内向秋寒发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
ding应助zhui采纳,获得10
5秒前
drwang120完成签到 ,获得积分10
5秒前
坨坨西州完成签到,获得积分10
6秒前
海绵体宝宝应助Louise采纳,获得20
6秒前
小马甲应助lichaoyes采纳,获得10
6秒前
6秒前
7秒前
7秒前
坨坨西州发布了新的文献求助10
8秒前
彬彬发布了新的文献求助10
8秒前
大模型应助Abao采纳,获得10
8秒前
sfw驳回了苏照杭应助
9秒前
dingdong发布了新的文献求助10
9秒前
别拖延了要毕业啊完成签到,获得积分10
10秒前
10秒前
10秒前
Rrr发布了新的文献求助10
10秒前
dingdong发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
yuan发布了新的文献求助10
13秒前
14秒前
cc完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794