Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
秀丽小猫咪应助科研通管家采纳,获得200
1秒前
852应助科研通管家采纳,获得10
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
warithy应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
2秒前
宅多点应助科研通管家采纳,获得10
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
安静真发布了新的文献求助10
3秒前
科研通AI6应助xiaosu采纳,获得10
4秒前
无聊的老姆完成签到 ,获得积分10
4秒前
7秒前
一一一完成签到,获得积分10
9秒前
拓扑超导相变完成签到 ,获得积分10
12秒前
不改颜色的孤星完成签到,获得积分10
13秒前
小宇完成签到 ,获得积分10
14秒前
隐形傲霜完成签到 ,获得积分10
21秒前
ncwgx完成签到,获得积分10
23秒前
YuanLeiZhang完成签到,获得积分10
24秒前
科研通AI6应助Barry采纳,获得30
25秒前
26秒前
LY发布了新的文献求助10
26秒前
学术地雷发布了新的文献求助30
27秒前
香蕉觅云应助侯_采纳,获得10
27秒前
无极微光应助illuminate采纳,获得20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951