Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴答答发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
巫马尔槐完成签到,获得积分10
2秒前
Ava应助小学生库里采纳,获得10
3秒前
Kevin关注了科研通微信公众号
3秒前
细心的若枫完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
xxz完成签到,获得积分10
5秒前
ll61完成签到,获得积分10
5秒前
jerry发布了新的文献求助10
7秒前
邹友亮发布了新的文献求助10
8秒前
Orange应助积极的白亦采纳,获得10
10秒前
11秒前
完美世界应助...采纳,获得10
11秒前
avalanche应助无辜的笑柳采纳,获得50
12秒前
Floy完成签到,获得积分10
12秒前
Minzy发布了新的文献求助10
12秒前
小心薛了你完成签到,获得积分10
12秒前
12345发布了新的文献求助10
12秒前
111222完成签到,获得积分10
13秒前
14秒前
Llllllllily完成签到,获得积分10
16秒前
完美世界应助一缕阳光采纳,获得10
16秒前
jerry完成签到,获得积分10
16秒前
16秒前
搜集达人应助kiss采纳,获得10
17秒前
爱笑映菡完成签到,获得积分10
17秒前
一条咸瑜完成签到 ,获得积分10
17秒前
17秒前
18秒前
激昂的雪枫关注了科研通微信公众号
18秒前
量子星尘发布了新的文献求助10
19秒前
wanci应助chunhuizhang采纳,获得10
19秒前
隐形曼青应助Minzy采纳,获得10
20秒前
热情的黑猫完成签到,获得积分10
21秒前
无花果应助俏皮的夏岚采纳,获得10
21秒前
积极泽洋完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469