Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier BV]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜噜噜噜噜完成签到,获得积分10
1秒前
赵慧霞关注了科研通微信公众号
1秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
2秒前
内向苡完成签到,获得积分10
3秒前
以筱发布了新的文献求助10
5秒前
bhkwxdxy完成签到,获得积分10
6秒前
悦耳虔纹完成签到 ,获得积分10
6秒前
xx完成签到,获得积分10
6秒前
大气灵枫完成签到,获得积分10
6秒前
妮妮完成签到,获得积分10
7秒前
9秒前
Struggle完成签到 ,获得积分10
10秒前
10秒前
秦兴虎完成签到,获得积分10
11秒前
Drew11完成签到,获得积分10
11秒前
风趣青槐完成签到,获得积分10
13秒前
科隆龙完成签到,获得积分10
14秒前
14秒前
饱满一手完成签到 ,获得积分10
14秒前
99完成签到,获得积分10
16秒前
枕星发布了新的文献求助10
16秒前
drlq2022完成签到,获得积分10
17秒前
王山完成签到,获得积分10
18秒前
自觉寒梦完成签到,获得积分10
19秒前
ding应助缥缈一刀采纳,获得10
19秒前
pakiorder发布了新的文献求助10
19秒前
专心搞学术完成签到,获得积分10
19秒前
bkagyin应助zzcherished采纳,获得10
21秒前
你怎么这么可爱啊完成签到,获得积分10
21秒前
22秒前
研友_Lmg1gZ完成签到,获得积分10
22秒前
Crazyer完成签到,获得积分10
22秒前
Shuey完成签到,获得积分10
23秒前
XXXXH完成签到,获得积分10
23秒前
Z可完成签到 ,获得积分10
24秒前
momo123完成签到 ,获得积分10
24秒前
高兴的书竹完成签到 ,获得积分10
25秒前
mp5完成签到,获得积分10
26秒前
薯条一克完成签到 ,获得积分10
26秒前
zzcherished完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029