Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier BV]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼完成签到 ,获得积分20
1秒前
凶狠的小兔子完成签到 ,获得积分10
2秒前
黎昕完成签到,获得积分10
2秒前
千寻完成签到,获得积分10
2秒前
黑色卡布奇诺完成签到,获得积分10
2秒前
2秒前
奋斗雅香完成签到 ,获得积分10
3秒前
七七完成签到 ,获得积分10
3秒前
123发布了新的文献求助10
3秒前
pengpengpeng完成签到,获得积分10
3秒前
4秒前
maodou完成签到,获得积分10
4秒前
Hilda007应助yyc采纳,获得10
5秒前
cbbb完成签到,获得积分10
5秒前
zisu完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
ggbond完成签到 ,获得积分10
5秒前
5秒前
彭于晏应助刘思琪采纳,获得10
6秒前
GAN完成签到,获得积分10
6秒前
Liuying2809完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
asd发布了新的文献求助10
7秒前
7秒前
甜甜文涛完成签到,获得积分20
7秒前
Akim应助dada采纳,获得10
7秒前
Yff完成签到,获得积分10
7秒前
QQ完成签到,获得积分10
7秒前
matt发布了新的文献求助30
7秒前
zyl完成签到,获得积分10
7秒前
8秒前
薯条一克完成签到 ,获得积分10
8秒前
Scarecrow完成签到,获得积分10
8秒前
Snowy周完成签到,获得积分10
8秒前
hong完成签到,获得积分10
9秒前
轩儿轩完成签到 ,获得积分10
9秒前
阳炎完成签到,获得积分10
9秒前
zx完成签到,获得积分10
9秒前
希望天下0贩的0应助MikiWu采纳,获得10
9秒前
9秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235396
求助须知:如何正确求助?哪些是违规求助? 4403743
关于积分的说明 13704210
捐赠科研通 4271206
什么是DOI,文献DOI怎么找? 2343924
邀请新用户注册赠送积分活动 1341104
关于科研通互助平台的介绍 1298619