Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier BV]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂涂完成签到 ,获得积分10
1秒前
1秒前
浮游应助取个名儿吧采纳,获得10
1秒前
罗彩明发布了新的文献求助10
2秒前
朱超帆发布了新的文献求助10
2秒前
认真的金针菇完成签到,获得积分10
3秒前
科研怪人完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
凡人发布了新的文献求助10
4秒前
123PY完成签到,获得积分10
4秒前
科研通AI6应助昵称呢采纳,获得10
5秒前
walk发布了新的文献求助10
5秒前
6秒前
咕咕发布了新的文献求助10
6秒前
小蘑菇应助ruby采纳,获得10
6秒前
醇杰的明哲完成签到 ,获得积分10
6秒前
cola发布了新的文献求助30
6秒前
zhangliangfu发布了新的文献求助10
6秒前
cxm666发布了新的文献求助10
7秒前
8秒前
排骨炖汤完成签到,获得积分0
8秒前
oyn66完成签到,获得积分10
8秒前
NexusExplorer应助刻苦初兰采纳,获得10
9秒前
爱丽丝发布了新的文献求助10
9秒前
何香香能吃苦完成签到,获得积分10
9秒前
洋洋洋完成签到,获得积分10
9秒前
坤坤完成签到,获得积分10
11秒前
11秒前
大模型应助纳纳椰采纳,获得10
11秒前
12秒前
12秒前
FMZ完成签到,获得积分10
12秒前
25689发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
凡人完成签到,获得积分10
13秒前
13秒前
14秒前
科研通AI5应助23xyke采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958982
求助须知:如何正确求助?哪些是违规求助? 4219827
关于积分的说明 13138276
捐赠科研通 4003232
什么是DOI,文献DOI怎么找? 2190680
邀请新用户注册赠送积分活动 1205340
关于科研通互助平台的介绍 1116823