Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:7
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SilenceDirect发布了新的文献求助10
1秒前
大力完成签到,获得积分10
2秒前
芋头发布了新的文献求助10
3秒前
TJC发布了新的文献求助10
4秒前
洪洪1完成签到,获得积分10
4秒前
4秒前
5秒前
安静蛟凤完成签到 ,获得积分10
6秒前
Behappy发布了新的文献求助30
7秒前
7秒前
洪亮完成签到,获得积分0
8秒前
小马甲应助暴躁的迎波采纳,获得10
9秒前
SilenceDirect完成签到,获得积分10
11秒前
qianqian发布了新的文献求助10
11秒前
12秒前
Long完成签到,获得积分20
12秒前
13秒前
积极的夏天完成签到 ,获得积分10
13秒前
qikkk发布了新的文献求助10
13秒前
lull完成签到,获得积分10
13秒前
擦书给擦书的求助进行了留言
14秒前
信仰发布了新的文献求助10
14秒前
嗯哼举报抓到你啦求助涉嫌违规
15秒前
乌力吉完成签到,获得积分10
15秒前
香蕉觅云应助BBQ采纳,获得10
16秒前
18秒前
乌力吉发布了新的文献求助10
18秒前
cctv18给Lolo的求助进行了留言
19秒前
19秒前
高高烙发布了新的文献求助20
19秒前
20秒前
布莱橙发布了新的文献求助10
20秒前
菲菲发布了新的文献求助10
21秒前
qing1245完成签到,获得积分10
21秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243808
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249384
捐赠科研通 2556359
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625794