Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落后妖妖发布了新的文献求助10
1秒前
任性雪糕完成签到 ,获得积分10
1秒前
sgt完成签到,获得积分10
1秒前
xxm发布了新的文献求助10
2秒前
star应助舒适的皮卡丘采纳,获得10
2秒前
2秒前
Hello应助自觉水绿采纳,获得10
3秒前
3秒前
xl完成签到,获得积分10
5秒前
5秒前
yuan发布了新的文献求助10
5秒前
文静的柠檬完成签到,获得积分20
5秒前
臭臭完成签到,获得积分10
5秒前
tomjiwen完成签到 ,获得积分10
6秒前
FashionBoy应助伶俐凡白采纳,获得10
7秒前
8秒前
8秒前
CodeCraft应助黄婷萱采纳,获得10
8秒前
六元一斤虾完成签到 ,获得积分10
8秒前
勤奋傲云完成签到,获得积分10
8秒前
李健的小迷弟应助xl采纳,获得10
9秒前
酷波er应助董先生采纳,获得10
11秒前
霍笑寒完成签到,获得积分10
11秒前
Steven发布了新的文献求助50
11秒前
地平完成签到,获得积分10
11秒前
12秒前
从嘉发布了新的文献求助10
12秒前
13秒前
共享精神应助袁露采纳,获得30
13秒前
15秒前
科目三应助wgnahoa采纳,获得10
15秒前
16秒前
充电宝应助LI电池采纳,获得10
16秒前
认真搞科研啦完成签到,获得积分10
17秒前
退学炒股发布了新的文献求助10
17秒前
女爰舍予发布了新的文献求助10
17秒前
20秒前
ww发布了新的文献求助10
20秒前
汉堡王完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875