Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:10
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁映之发布了新的文献求助10
1秒前
1秒前
Hepatology完成签到,获得积分10
1秒前
Tysonqu发布了新的文献求助10
2秒前
2秒前
xlh发布了新的文献求助10
2秒前
张子翀完成签到 ,获得积分10
2秒前
斯文败类应助欲扬先抑采纳,获得10
2秒前
wwww发布了新的文献求助10
4秒前
shiqi关注了科研通微信公众号
4秒前
4秒前
香蕉觅云应助轻松的语海采纳,获得30
5秒前
量子星尘发布了新的文献求助10
5秒前
开朗的宛丝完成签到 ,获得积分10
5秒前
房房不慌完成签到 ,获得积分10
5秒前
5秒前
6秒前
daisy发布了新的文献求助10
6秒前
清风揽月发布了新的文献求助10
7秒前
钱大大发布了新的文献求助10
7秒前
7秒前
柳LL发布了新的文献求助10
7秒前
文静念寒完成签到,获得积分10
7秒前
FFFFF应助粗心的从露采纳,获得10
8秒前
打打应助曾阿牛采纳,获得10
8秒前
Orange应助小孙失策了采纳,获得10
8秒前
8秒前
俊逸的猫咪关注了科研通微信公众号
9秒前
烟花应助从容的天空采纳,获得30
10秒前
11秒前
kove0928完成签到,获得积分10
11秒前
11秒前
专注淇发布了新的文献求助10
12秒前
elysia完成签到,获得积分10
12秒前
daisy完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
tanx发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297