Assessing the accuracy of large-scale rainfall erosivity estimation based on climate zones and rainfall patterns

环境科学 降水 比例(比率) 气候学 腐蚀 气候变化 水文学(农业) 气象学 地质学 地理 地图学 海洋学 古生物学 岩土工程
作者
Jialei Li,Ranhao Sun,Liding Chen
出处
期刊:Catena [Elsevier]
卷期号:217: 106508-106508 被引量:7
标识
DOI:10.1016/j.catena.2022.106508
摘要

Rainfall erosivity is affected by the amount and intensity of rainfall in a certain period, which is an essential factor for soil erosion prediction. However, it is generally calculated by field measurements on a local scale. With a focus on global soil erosion assessment, some researchers have improved the estimation of global rainfall erosivity by using statistical models in some climate zones. However, the climate zones cannot represent actual erosive rainfall events. Therefore, such usage of models would lead to more uncertainties when estimating rainfall erosivity across the globe. Here, our study compared six common-used models of rainfall erosivity and then improved the accuracy of rainfall erosivity estimations based on global rainfall patterns, which are defined by the amount and distribution of rainfall in a year. Results showed that: (1) Compared with the climate zone classification, the model fitting under the rainfall pattern classification can improve the model accuracy and result in higher variation among the rainfall patterns. The average accuracy of all models was improved by 8%, and the accuracy of annual models was increased by 33%. (2) Models based on annual rainfall are more suitable for the drought and seasonal rainfall patterns, while most models based on monthly rainfall are suitable for the moderate rainfall pattern. However, most models based on monthly or annual rainfall have high uncertainties and low accuracies in regions with annual precipitation < 200 mm or > 850 mm. This study can provide helpful implications for model selection and parameter calibration associated with large-scale water erosion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
2秒前
吹泡泡的红豆完成签到 ,获得积分10
3秒前
研友_89eBO8完成签到 ,获得积分10
3秒前
隐形曼青应助ZeJ采纳,获得10
3秒前
3秒前
隐形曼青应助温暖的钻石采纳,获得10
4秒前
Khr1stINK发布了新的文献求助10
5秒前
123cxj发布了新的文献求助10
6秒前
星辰大海应助红红采纳,获得10
6秒前
sweetbearm应助小周采纳,获得10
7秒前
科研通AI5应助赖道之采纳,获得10
7秒前
8秒前
HonamC完成签到,获得积分10
9秒前
十三十四十五完成签到,获得积分10
10秒前
潇洒的问夏完成签到 ,获得积分10
12秒前
无声瀑布完成签到,获得积分10
12秒前
Bingtao_Lian完成签到 ,获得积分10
13秒前
小布丁完成签到 ,获得积分10
13秒前
竹筏过海应助季生采纳,获得30
14秒前
15秒前
buno应助22采纳,获得10
16秒前
赘婿应助TT采纳,获得10
17秒前
17秒前
17秒前
18秒前
Jenny应助赖道之采纳,获得10
20秒前
依古比古完成签到 ,获得积分10
22秒前
汎影发布了新的文献求助10
22秒前
小二完成签到,获得积分10
22秒前
23秒前
25秒前
顾矜应助长情洙采纳,获得10
25秒前
monere发布了新的文献求助30
25秒前
Xiaoxiao应助汉关采纳,获得10
27秒前
27秒前
汎影完成签到,获得积分10
28秒前
29秒前
Chen发布了新的文献求助10
31秒前
WW完成签到,获得积分10
31秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808