A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images

人工智能 计算机科学 卷积神经网络 特征提取 人工神经网络 深度学习 超声波 模式识别(心理学) 乳腺超声检查 乳腺癌 乳腺摄影术 癌症 放射科 医学 内科学
作者
Xiaolei Qu,Hongyan Lu,Wenzhong Tang,Shuai Wang,Dezhi Zheng,Yaxin Hou,Jue Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 5787-5798 被引量:35
标识
DOI:10.1002/mp.15852
摘要

Breast cancer is the most commonly occurring cancer worldwide. The ultrasound reflectivity imaging technique can be used to obtain breast ultrasound (BUS) images, which can be used to classify benign and malignant tumors. However, the classification is subjective and dependent on the experience and skill of operators and doctors. The automatic classification method can assist doctors and improve the objectivity, but current convolution neural network (CNN) is not good at learning global features and vision transformer (ViT) is not good at extraction local features. In this study, we proposed a visual geometry group attention ViT (VGGA-ViT) network to overcome their disadvantages.In the proposed method, we used a CNN module to extract the local features and employed a ViT module to learn the global relationship among different regions and enhance the relevant local features. The CNN module was named the VGGA module. It was composed of a VGG backbone, a feature extraction fully connected layer, and a squeeze-and-excitation block. Both the VGG backbone and the ViT module were pretrained on the ImageNet dataset and retrained using BUS samples in this study. Two BUS datasets were employed for validation.Cross-validation was conducted on two BUS datasets. For the Dataset A, the proposed VGGA-ViT network achieved high accuracy (88.71 ±$\ \pm \ $ 1.55%), recall (90.73 ±$\ \pm \ $ 1.57%), specificity (85.58 ±$\ \pm \ $ 3.35%), precision (90.77 ±$\ \pm \ $ 1.98%), F1 score (90.73 ±$\ \pm \ $ 1.24%), and Matthews correlation coefficient (MCC) (76.34 ±7$\ \pm \ 7$ 3.29%), which were better than those of all compared previous networks in this study. The Dataset B was used as a separate test set, the test results showed that the VGGA-ViT had highest accuracy (81.72 ±$\ \pm \ $ 2.99%), recall (64.45 ±$\ \pm \ $ 2.96%), specificity (90.28 ±$\ \pm \ $ 3.51%), precision (77.08 ±$\ \pm \ $ 7.21%), F1 score (70.11 ±$\ \pm \ $ 4.25%), and MCC (57.64 ±$\ \pm \ $ 6.88%).In this study, we proposed the VGGA-ViT for the BUS classification, which was good at learning both local and global features. The proposed network achieved higher accuracy than the compared previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助hahaha采纳,获得10
刚刚
坚强莺发布了新的文献求助20
1秒前
1秒前
YNL发布了新的文献求助10
2秒前
6秒前
marongzhi发布了新的文献求助10
6秒前
7秒前
Jenny完成签到,获得积分10
8秒前
9秒前
感动背包完成签到,获得积分10
9秒前
黑炭球发布了新的文献求助10
10秒前
李健的小迷弟应助Aurora采纳,获得10
11秒前
11秒前
勇敢牛牛发布了新的文献求助10
13秒前
快乐友灵完成签到,获得积分10
13秒前
asdfqwer应助感动背包采纳,获得10
13秒前
14秒前
拼搏老九发布了新的文献求助10
14秒前
科研百晓生完成签到 ,获得积分10
14秒前
英姑应助痴情的寒云采纳,获得10
15秒前
hahaha发布了新的文献求助10
15秒前
15秒前
Owen应助风中的非笑采纳,获得10
15秒前
16秒前
16秒前
小鸣完成签到 ,获得积分10
18秒前
19秒前
19秒前
凹凸先森发布了新的文献求助10
19秒前
19秒前
Aurora发布了新的文献求助10
20秒前
勇敢牛牛完成签到,获得积分10
20秒前
Lucas应助哭泣乌采纳,获得10
20秒前
是鑫鑫发布了新的文献求助10
21秒前
22秒前
杨自强发布了新的文献求助10
23秒前
23秒前
慧慧发布了新的文献求助10
24秒前
小马甲应助不攻自破采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962835
求助须知:如何正确求助?哪些是违规求助? 3508752
关于积分的说明 11142844
捐赠科研通 3241587
什么是DOI,文献DOI怎么找? 1791624
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803540