CGFMD: CNN and GRU Based Framework for Malicious Domain Name Detection

僵尸网络 恶意软件 计算机科学 鉴定(生物学) 领域(数学分析) 互联网 域名 域名系统 数据挖掘 钥匙(锁) 网络安全 计算机安全 卷积神经网络 人工智能 模式识别(心理学) 万维网 植物 生物 数学分析 数学
作者
Wujian Ke,Zheng Dong,Cong Zhang,Biying Deng,Hui Yang,Lulu Tian
出处
期刊:Communications in computer and information science 卷期号:: 564-574
标识
DOI:10.1007/978-3-031-06767-9_47
摘要

With the rapid development of Internet technology, the Internet has penetrated into all aspects of people’s life. Botnet and malware are important issues facing network security. These malicious services often use Domain Generation Algorithm (DGA) to avoid security detection. DGA detection is one of the key technologies of malicious C & C communication detection. The identification of malicious domain names generated by DGA has always been an important topic to maintain network security. At present, there are some problems in the identification of malicious domain names, such as single identification method, low accuracy and low identification efficiency. We propose a malicious domain name detection model CGFMD based on CNN-GRU. It combines word vector mapping with convolution neural network to automatically extract the potential features of malicious domain names. At the same time, GRU network is added to the model to solve the long-term dependence problem. The experimental results show that CGFMD algorithm has higher detection accuracy and lower false positive rate than traditional methods. It saves cumbersome manual feature extraction, and can recognize DGA domain names efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwsxv完成签到,获得积分20
刚刚
1秒前
hcw发布了新的文献求助30
1秒前
2秒前
寒舟饮完成签到,获得积分10
3秒前
shirley完成签到,获得积分10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
兴奋涵雁完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
青云完成签到,获得积分10
7秒前
hcw完成签到,获得积分10
7秒前
T田发布了新的文献求助10
7秒前
7秒前
兴奋涵雁发布了新的文献求助10
7秒前
fly完成签到,获得积分10
7秒前
ZSQ发布了新的文献求助10
7秒前
何以故人初完成签到 ,获得积分10
9秒前
CipherSage应助shirley采纳,获得30
9秒前
10秒前
Lucas应助小樱没有魔法阵采纳,获得10
13秒前
14秒前
长情的涔完成签到 ,获得积分10
14秒前
14秒前
14秒前
FashionBoy应助ZSQ采纳,获得10
14秒前
15秒前
Ava应助SILENCE采纳,获得10
16秒前
慵懒的树发布了新的文献求助10
16秒前
cutey小鲸鱼完成签到,获得积分10
17秒前
友好真发布了新的文献求助10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309