Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network

下部结构 人工神经网络 药品 计算机科学 图形 钥匙(锁) 药物与药物的相互作用 一般化 人工智能 模式识别(心理学) 机器学习 理论计算机科学 数学 药理学 工程类 生物 结构工程 数学分析 计算机安全
作者
Ziduo Yang,Weihe Zhong,Qiujie Lv,Calvin Yu‐Chian Chen
出处
期刊:Chemical Science [Royal Society of Chemistry]
卷期号:13 (29): 8693-8703 被引量:30
标识
DOI:10.1039/d2sc02023h
摘要

Drug-drug interactions (DDIs) can trigger unexpected pharmacological effects on the body, and the causal mechanisms are often unknown. Graph neural networks (GNNs) have been developed to better understand DDIs. However, identifying key substructures that contribute most to the DDI prediction is a challenge for GNNs. In this study, we presented a substructure-aware graph neural network, a message passing neural network equipped with a novel substructure attention mechanism and a substructure-substructure interaction module (SSIM) for DDI prediction (SA-DDI). Specifically, the substructure attention was designed to capture size- and shape-adaptive substructures based on the chemical intuition that the sizes and shapes are often irregular for functional groups in molecules. DDIs are fundamentally caused by chemical substructure interactions. Thus, the SSIM was used to model the substructure-substructure interactions by highlighting important substructures while de-emphasizing the minor ones for DDI prediction. We evaluated our approach in two real-world datasets and compared the proposed method with the state-of-the-art DDI prediction models. The SA-DDI surpassed other approaches on the two datasets. Moreover, the visual interpretation results showed that the SA-DDI was sensitive to the structure information of drugs and was able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method improved the generalization and interpretation capability of DDI prediction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱啊油发布了新的文献求助10
刚刚
丙烯酸树脂完成签到,获得积分10
1秒前
BB完成签到,获得积分10
1秒前
坦率的匪应助静仰星空采纳,获得10
2秒前
2秒前
actor2006完成签到,获得积分10
3秒前
zhaxiao完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助淘淘采纳,获得10
3秒前
冰火油条虾完成签到,获得积分10
3秒前
陈逸恒发布了新的文献求助10
3秒前
大红完成签到,获得积分10
3秒前
爆米花应助应天亦采纳,获得10
4秒前
善学以致用应助echooooo采纳,获得10
4秒前
墨卿完成签到,获得积分10
4秒前
uraylong发布了新的文献求助10
5秒前
6秒前
达达利亚完成签到,获得积分10
6秒前
111发布了新的文献求助30
6秒前
ponytail完成签到,获得积分10
7秒前
榕小蜂完成签到 ,获得积分10
7秒前
7秒前
8秒前
wdy111应助Mila采纳,获得20
8秒前
hahhh7发布了新的文献求助10
8秒前
8秒前
科研通AI5应助huyuan采纳,获得10
9秒前
冰西瓜完成签到 ,获得积分0
9秒前
酱啊油完成签到,获得积分10
9秒前
charles发布了新的文献求助10
11秒前
LYL2003完成签到,获得积分10
11秒前
1231完成签到,获得积分10
11秒前
12秒前
大气的天蓝完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
白鸢发布了新的文献求助10
13秒前
有趣的灵魂完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653