Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 计算机网络 语言学 哲学
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助wanghaha采纳,获得10
2秒前
彭于晏应助八个冬菇采纳,获得10
3秒前
kxw发布了新的文献求助10
3秒前
3秒前
YJS完成签到 ,获得积分20
6秒前
123发布了新的文献求助10
8秒前
Mtoc完成签到 ,获得积分10
8秒前
劣根完成签到,获得积分10
10秒前
10秒前
科目三应助kk采纳,获得10
11秒前
jiose驳回了Akim应助
12秒前
张弘完成签到,获得积分10
12秒前
13秒前
啦啦啦发布了新的文献求助10
14秒前
15秒前
17秒前
19秒前
秋天爱吃板栗应助求助采纳,获得50
19秒前
所所应助qishi采纳,获得10
20秒前
我是老大应助naturehome采纳,获得10
22秒前
22秒前
Ly发布了新的文献求助10
22秒前
大个应助张小龙采纳,获得10
23秒前
猫南北完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
西屿发布了新的文献求助10
26秒前
26秒前
海藻发布了新的文献求助10
26秒前
dodo完成签到 ,获得积分10
27秒前
硕shuo完成签到 ,获得积分10
28秒前
Jasper应助andy-law采纳,获得10
28秒前
Hello应助Sievi采纳,获得10
28秒前
carryxxx关注了科研通微信公众号
28秒前
29秒前
29秒前
聪明天佑完成签到 ,获得积分10
29秒前
TheForest发布了新的文献求助20
31秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076461
求助须知:如何正确求助?哪些是违规求助? 2729295
关于积分的说明 7508443
捐赠科研通 2377577
什么是DOI,文献DOI怎么找? 1260686
科研通“疑难数据库(出版商)”最低求助积分说明 611122
版权声明 597203