Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 计算机网络 语言学 哲学
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坨坨西州完成签到,获得积分10
1秒前
海绵体宝宝应助Louise采纳,获得20
1秒前
小马甲应助lichaoyes采纳,获得10
1秒前
1秒前
2秒前
2秒前
坨坨西州发布了新的文献求助10
3秒前
彬彬发布了新的文献求助10
3秒前
大模型应助Abao采纳,获得10
3秒前
sfw驳回了苏照杭应助
4秒前
dingdong发布了新的文献求助10
4秒前
别拖延了要毕业啊完成签到,获得积分10
5秒前
5秒前
5秒前
Rrr发布了新的文献求助10
5秒前
dingdong发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
yuan发布了新的文献求助10
8秒前
9秒前
cc完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
一一发布了新的文献求助10
10秒前
领导范儿应助Chridy采纳,获得10
10秒前
11秒前
凤凰山发布了新的文献求助10
11秒前
11秒前
孔雨珍发布了新的文献求助10
11秒前
淡定的思松应助通~采纳,获得10
12秒前
12秒前
明亮的八宝粥完成签到,获得积分10
12秒前
mayungui发布了新的文献求助10
12秒前
大型海狮完成签到,获得积分10
12秒前
搜集达人应助科研菜鸟采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794