Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 哲学 语言学 计算机网络
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助zmin采纳,获得30
1秒前
王好发布了新的文献求助10
1秒前
1秒前
南星发布了新的文献求助10
1秒前
上官若男应助自觉雨文采纳,获得10
1秒前
2秒前
EM完成签到 ,获得积分20
2秒前
诩阽完成签到,获得积分10
2秒前
小张完成签到,获得积分10
2秒前
田様应助曹操采纳,获得10
3秒前
魔幻茈完成签到,获得积分10
3秒前
斯文的飞雪完成签到,获得积分10
3秒前
3秒前
3秒前
我是老大应助pp采纳,获得10
4秒前
李晓龙发布了新的文献求助10
4秒前
5秒前
haochengshen关注了科研通微信公众号
5秒前
6秒前
6秒前
将心比鑫完成签到,获得积分10
6秒前
潇洒的冰烟完成签到,获得积分10
6秒前
ceeray23发布了新的文献求助20
6秒前
自然白安完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
沙漠大雕完成签到,获得积分10
8秒前
韦远侵发布了新的文献求助10
9秒前
小郭发布了新的文献求助10
9秒前
鹤轩应助尔东先生采纳,获得10
9秒前
9秒前
10秒前
qinxiang完成签到,获得积分10
10秒前
苏东方发布了新的文献求助10
10秒前
大树守卫完成签到,获得积分10
10秒前
顺心凝海发布了新的文献求助60
11秒前
11秒前
现代的绿真完成签到,获得积分10
11秒前
ZYQ完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304