Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 哲学 语言学 计算机网络
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小冬腊月完成签到,获得积分10
刚刚
嘻嘻嘻嘻嘻嘻完成签到,获得积分10
刚刚
1秒前
CT发布了新的文献求助10
1秒前
1秒前
ZQY完成签到,获得积分20
2秒前
2秒前
syx完成签到,获得积分10
2秒前
跳动的蓝精灵完成签到,获得积分10
2秒前
文献狗发布了新的文献求助10
2秒前
一颗大门牙完成签到,获得积分10
2秒前
默11完成签到 ,获得积分10
2秒前
XL完成签到,获得积分10
3秒前
十二月完成签到,获得积分10
3秒前
CC完成签到,获得积分10
4秒前
moon完成签到,获得积分10
4秒前
风趣的亦巧完成签到,获得积分10
4秒前
4秒前
zgx完成签到,获得积分10
5秒前
在路上完成签到 ,获得积分10
5秒前
Simmy完成签到,获得积分10
5秒前
年轻千愁完成签到 ,获得积分10
5秒前
6秒前
冷静山灵发布了新的文献求助10
6秒前
why完成签到,获得积分20
6秒前
阿V完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI2S应助简单不言采纳,获得10
8秒前
吃颗电池完成签到,获得积分10
8秒前
8秒前
yar应助科研通管家采纳,获得10
8秒前
大饼应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
9秒前
shinnosuke应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
马金金发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451