Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 计算机网络 语言学 哲学
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助FDSDK采纳,获得10
刚刚
1秒前
彭彭发布了新的文献求助10
2秒前
轻松友容完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
深情安青应助qliu采纳,获得10
4秒前
4秒前
慕青应助beyondjun采纳,获得10
5秒前
梦醒了完成签到 ,获得积分10
5秒前
杨小黑发布了新的文献求助10
6秒前
柯一一应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得20
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
典雅听枫发布了新的文献求助10
8秒前
8秒前
默欢完成签到,获得积分10
9秒前
9秒前
求知的周完成签到,获得积分10
11秒前
cass发布了新的文献求助10
11秒前
乐乐应助乐观囧采纳,获得10
12秒前
13秒前
Ava应助油糕饵块采纳,获得10
14秒前
14秒前
李威龙发布了新的文献求助10
14秒前
Ekko完成签到,获得积分10
15秒前
Emy完成签到,获得积分10
15秒前
所所应助Ah采纳,获得10
15秒前
李爱国应助典雅听枫采纳,获得10
16秒前
内向寒云发布了新的文献求助10
17秒前
FDSDK发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382