Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 哲学 语言学 计算机网络
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧蓝天晴发布了新的文献求助10
1秒前
迎风映雪完成签到,获得积分10
1秒前
缓慢咖啡发布了新的文献求助20
1秒前
孙凤敏发布了新的文献求助10
2秒前
董鑫完成签到,获得积分10
2秒前
2秒前
2秒前
dry发布了新的文献求助10
3秒前
YY发布了新的文献求助30
3秒前
peter发布了新的文献求助10
3秒前
3秒前
4秒前
FB发布了新的文献求助10
4秒前
Shasa发布了新的文献求助30
4秒前
李兴月完成签到 ,获得积分10
5秒前
加油发布了新的文献求助10
5秒前
仔仔仔平完成签到,获得积分10
5秒前
hmy发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI6应助一只小咸鱼采纳,获得10
6秒前
暴躁的夏烟应助xueshu采纳,获得10
6秒前
1111chen发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
在水一方应助勤恳凌文采纳,获得10
8秒前
我是老大应助tianmafei采纳,获得10
8秒前
Vanessa发布了新的文献求助10
9秒前
虚幻山晴完成签到,获得积分10
9秒前
大模型应助丙队长采纳,获得10
9秒前
9秒前
量子世界小居民完成签到,获得积分10
10秒前
风一起完成签到,获得积分10
10秒前
科研通AI6应助李白白采纳,获得10
10秒前
隐形的元珊完成签到,获得积分10
10秒前
VAudreyV完成签到 ,获得积分20
10秒前
琪琪扬扬完成签到,获得积分10
11秒前
Serein完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721