Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 哲学 语言学 计算机网络
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向沛山完成签到 ,获得积分10
刚刚
pp完成签到 ,获得积分10
3秒前
4秒前
4秒前
文艺寄松完成签到 ,获得积分10
5秒前
阡陌完成签到,获得积分10
7秒前
9秒前
李雅琳完成签到 ,获得积分10
9秒前
9秒前
zcm1999完成签到,获得积分10
10秒前
生信小菜鸟完成签到 ,获得积分10
12秒前
ww完成签到,获得积分20
12秒前
axi完成签到,获得积分10
15秒前
晓晓晓徐发布了新的文献求助10
16秒前
充电宝应助彩色炎彬采纳,获得10
16秒前
flipped完成签到,获得积分10
19秒前
19秒前
wodetaiyangLLL完成签到 ,获得积分10
20秒前
付滋滋完成签到 ,获得积分10
20秒前
THEO完成签到,获得积分10
21秒前
22秒前
111发布了新的文献求助10
23秒前
Hajimimimi完成签到,获得积分10
27秒前
谦让碧菡发布了新的文献求助10
28秒前
淡定的幻枫完成签到 ,获得积分10
29秒前
fzzzzlucy应助科研通管家采纳,获得10
30秒前
海绵宝宝完成签到 ,获得积分10
31秒前
万能图书馆应助程昱采纳,获得10
31秒前
cling完成签到 ,获得积分10
33秒前
晓晓晓徐完成签到,获得积分10
34秒前
赘婿应助111采纳,获得10
34秒前
简单小土豆完成签到 ,获得积分10
35秒前
36秒前
DrLiu完成签到,获得积分10
36秒前
三木完成签到 ,获得积分10
39秒前
学术费物完成签到 ,获得积分10
42秒前
冯不言发布了新的文献求助10
42秒前
lod完成签到,获得积分10
45秒前
身强力壮运气好完成签到,获得积分10
48秒前
谦让碧菡完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856740
求助须知:如何正确求助?哪些是违规求助? 6323898
关于积分的说明 15635149
捐赠科研通 4971208
什么是DOI,文献DOI怎么找? 2681237
邀请新用户注册赠送积分活动 1625183
关于科研通互助平台的介绍 1582215