Dynamic-balanced double-attention fusion for image captioning

隐藏字幕 计算机科学 特征(语言学) 频道(广播) 人工智能 判决 图像(数学) 像素 模式识别(心理学) 哲学 语言学 计算机网络
作者
Changzhi Wang,Xiaodong Gu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105194-105194 被引量:5
标识
DOI:10.1016/j.engappai.2022.105194
摘要

Image captioning has received significant attention in the cross-modal field in which spatial and channel attentions play a crucial role. However, such attention-based approaches ignore two issues: (1) errors or noise in the channel feature map amplifies in the spatial feature map, leading to a lower model reliability; (2) image spatial feature and channel feature provide different contributions to the prediction both function words (e.g., “in”, “out” and “on”) and notional words (e.g., “girl”, “teddy” and “bear”). To alleviate the above issues, in this paper we propose the Dynamic-Balanced Double-Attention Fusion (DBDAF) for image captioning task that novelly exploits the attention variation and enhances the overall performance of the model. Technically, DBDAF first integrates a parallel Double Attention Network (DAN) in which channel attention is capitalized on as a supplement to the region attention, enhancing the model reliability. Then, a attention variation based Balancing Attention Fusion Mechanism (BAFM) module is devised. When predicting function words and notional words, BAFM makes a dynamic balance between channel attention and region attention based on attention variation. Moreover, to achieve the richer image description, we further devise a Doubly Stochastic Regularization (DSR) penalty and integrate it into the model loss function. Such DSR makes the model equally focus on every pixel and every channel in generating entire sentence. Extensive experiments on the three typical datasets show our DBDAF outperforms the related end-to-end leading approaches clearly. More remarkably, DBDAF achieves 1.04% and 1.75% improvement in terms of BLEU4 and CIDEr on the MSCOCO datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Feng完成签到 ,获得积分10
1秒前
谢谢给量子星尘的求助进行了留言
1秒前
霜风款冬完成签到,获得积分10
3秒前
h w wang完成签到,获得积分10
6秒前
枫叶完成签到,获得积分10
8秒前
8秒前
别闹闹完成签到 ,获得积分10
9秒前
shouz完成签到,获得积分10
10秒前
俏皮的老三完成签到 ,获得积分10
11秒前
LS完成签到,获得积分10
11秒前
丁丁完成签到,获得积分10
12秒前
有终完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Felix完成签到 ,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得30
16秒前
耳东完成签到 ,获得积分10
16秒前
0109完成签到,获得积分10
17秒前
爱笑的鱼完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
小凯同学完成签到,获得积分10
19秒前
Cylair完成签到,获得积分10
20秒前
勤奋完成签到 ,获得积分10
20秒前
余春完成签到,获得积分10
20秒前
影像大侠完成签到,获得积分10
20秒前
面壁的章北海完成签到,获得积分10
23秒前
谢谢给量子星尘的求助进行了留言
23秒前
小橘子完成签到 ,获得积分10
23秒前
刘较瘦完成签到,获得积分10
27秒前
许自通完成签到,获得积分10
28秒前
Samuel98完成签到 ,获得积分10
30秒前
江湖应助MissingParadise采纳,获得10
31秒前
夏虫完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986