Multimodal prediction of response to neoadjuvant nivolumab and chemotherapy for surgically resectable stage IIIA non–small cell lung cancer.

医学 肿瘤科 队列 化学免疫疗法 无容量 新辅助治疗 内科学 肺癌 阶段(地层学) 癌症 放射科 外科 乳腺癌 免疫疗法 生物 古生物学
作者
Loïc Ferrer,Ernest Nadal,Floriane Guidel,Amelia Insa,Philippe Menu,J. Casal,Manuel Dómine,Bartomeu Massutí,Margarita Majem,Alex Martínez‐Martí,Rosario García Campelo,Javier de Castro,Manuel Cobo,G. López-Vivanco,E. del Barco,Reyes Bernabé,Nùria Viñolas,I. Barneto,Thierry Colin,Mariano Provencio-Pulla
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:40 (16_suppl): 8542-8542 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.8542
摘要

8542 Background: The NADIM trial (NCT03081689), led by the Spanish Lung Cancer Group, assessed the antitumor activity and safety of neoadjuvant chemoimmunotherapy for resectable stage IIIA NSCLC. Patients received neoadjuvant nivolumab and paclitaxel-carboplatin for three cycles before surgical resection, followed by one year of adjuvant nivolumab. At 24 months, progression-free survival (PFS) was 77%, suggesting that neoadjuvant chemoimmunotherapy represents a promising option in this setting. Pathological complete response (pCR) could potentially be used as an important surrogate endpoint for survival. We present here a re-analysis of the NADIM cohort aiming to develop a machine learning algorithm to predict the pCR status based on multimodal baseline data. Methods: We combined baseline clinical data (e.g., age, smoking status), biological data (e.g., tumor histology, mutations), radiology reports and radiomics analysis of the baseline CT scan in a multimodal analysis. While 46 patients were enrolled in the NADIM trial, only 28 had a complete set of data available for this retrospective study. For each patient, tumors were segmented on the baseline CT-scan in 3D by a Deep Learning algorithm. Radiomics features were extracted following the IBSI standards and combined with the other data modalities. A filter-based variable selection method was applied before training several machine learning algorithms. The optimization criterion was the Area Under the ROC Curve (AUC). Due to the small size of the cohort, a leave-one-out cross-validation approach was used to properly estimate the model performance. For a sub-cohort of 20 patients for which data have been collected longitudinally during the neoadjuvant treatment, an additional Delta-radiomics model was used to predict the pCR status. Results: An XGBoost algorithm with a linear base learner displayed an AUC of 0.69, a precision of 75%, a sensitivity of 83% and a specificity of 50%. Features with highest weight in the algorithm were a mix of radiological, radiomics, biological and clinical features (including the neutrophils to lymphocytes ratio, mutations and histology) highlighting the importance of a truly multimodal analysis. Indeed, withdrawing a specific data modality (e.g., radiomics or biological features), led to a decrease of ̃15% of the AUC. Inclusion of the Delta-radiomics analysis on the data collected longitudinally prior to surgery led to an improved AUC of 0.76 in that patient sub-cohort. Conclusions: This study is, to our knowledge, the first to offer a multimodal analysis of the response to neoadjuvant treatment for surgically resectable stage IIIA NSCLC and is a proof of concept that a machine learning algorithm can be used to predict the pCR in this context. These preliminary results are being confirmed in the ongoing NADIM II trial. Clinical trial information: NCT03838159.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruirchen完成签到,获得积分10
1秒前
1秒前
nan完成签到,获得积分10
2秒前
2秒前
科研通AI5应助Nimnse采纳,获得10
2秒前
复杂的忆灵完成签到,获得积分10
3秒前
Dr-Luo完成签到 ,获得积分10
3秒前
小二郎应助我是小张采纳,获得10
3秒前
安雨笙发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
5秒前
ding应助wenLi采纳,获得10
5秒前
上官若男应助jie酱拌面采纳,获得10
5秒前
长不大的will完成签到,获得积分10
6秒前
英俊的铭应助复杂的忆灵采纳,获得10
6秒前
WS发布了新的文献求助10
6秒前
苏丽妃完成签到 ,获得积分10
6秒前
6秒前
小月亮完成签到,获得积分10
7秒前
fanzi完成签到 ,获得积分10
7秒前
XXF完成签到,获得积分10
8秒前
搜集达人应助爱听歌笑寒采纳,获得10
8秒前
9秒前
Yara完成签到 ,获得积分10
9秒前
干净的沛蓝完成签到,获得积分10
10秒前
赘婿应助zaphkiel采纳,获得10
10秒前
Lee发布了新的文献求助10
10秒前
亚铁氰化钾完成签到,获得积分10
11秒前
感动归尘发布了新的文献求助10
12秒前
12秒前
13秒前
安雨笙完成签到,获得积分10
13秒前
科研通AI5应助谨慎的雨梅采纳,获得10
13秒前
wgt完成签到 ,获得积分10
13秒前
kk完成签到,获得积分10
14秒前
大白完成签到,获得积分10
14秒前
Damtree完成签到,获得积分10
14秒前
16秒前
guardcurry完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Lab-on-a-chip Devices for Advanced Biomedicines: Laboratory Scale Engineering to Clinical Ecosystem 1000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4530100
求助须知:如何正确求助?哪些是违规求助? 3968725
关于积分的说明 12295892
捐赠科研通 3634429
什么是DOI,文献DOI怎么找? 2000535
邀请新用户注册赠送积分活动 1036656
科研通“疑难数据库(出版商)”最低求助积分说明 926346