Multimodal prediction of response to neoadjuvant nivolumab and chemotherapy for surgically resectable stage IIIA non–small cell lung cancer.

医学 肿瘤科 队列 化学免疫疗法 无容量 新辅助治疗 内科学 肺癌 阶段(地层学) 癌症 放射科 外科 乳腺癌 免疫疗法 生物 古生物学
作者
Loïc Ferrer,Ernest Nadal,Floriane Guidel,Amelia Insa,Philippe Menu,J. Casal,Manuel Dómine,Bartomeu Massutí,Margarita Majem,Alex Martínez‐Martí,Rosario García Campelo,Javier de Castro,Manuel Cobo,G. López-Vivanco,E. del Barco,Reyes Bernabé,Nùria Viñolas,I. Barneto,Thierry Colin,Mariano Provencio-Pulla
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:40 (16_suppl): 8542-8542 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.8542
摘要

8542 Background: The NADIM trial (NCT03081689), led by the Spanish Lung Cancer Group, assessed the antitumor activity and safety of neoadjuvant chemoimmunotherapy for resectable stage IIIA NSCLC. Patients received neoadjuvant nivolumab and paclitaxel-carboplatin for three cycles before surgical resection, followed by one year of adjuvant nivolumab. At 24 months, progression-free survival (PFS) was 77%, suggesting that neoadjuvant chemoimmunotherapy represents a promising option in this setting. Pathological complete response (pCR) could potentially be used as an important surrogate endpoint for survival. We present here a re-analysis of the NADIM cohort aiming to develop a machine learning algorithm to predict the pCR status based on multimodal baseline data. Methods: We combined baseline clinical data (e.g., age, smoking status), biological data (e.g., tumor histology, mutations), radiology reports and radiomics analysis of the baseline CT scan in a multimodal analysis. While 46 patients were enrolled in the NADIM trial, only 28 had a complete set of data available for this retrospective study. For each patient, tumors were segmented on the baseline CT-scan in 3D by a Deep Learning algorithm. Radiomics features were extracted following the IBSI standards and combined with the other data modalities. A filter-based variable selection method was applied before training several machine learning algorithms. The optimization criterion was the Area Under the ROC Curve (AUC). Due to the small size of the cohort, a leave-one-out cross-validation approach was used to properly estimate the model performance. For a sub-cohort of 20 patients for which data have been collected longitudinally during the neoadjuvant treatment, an additional Delta-radiomics model was used to predict the pCR status. Results: An XGBoost algorithm with a linear base learner displayed an AUC of 0.69, a precision of 75%, a sensitivity of 83% and a specificity of 50%. Features with highest weight in the algorithm were a mix of radiological, radiomics, biological and clinical features (including the neutrophils to lymphocytes ratio, mutations and histology) highlighting the importance of a truly multimodal analysis. Indeed, withdrawing a specific data modality (e.g., radiomics or biological features), led to a decrease of ̃15% of the AUC. Inclusion of the Delta-radiomics analysis on the data collected longitudinally prior to surgery led to an improved AUC of 0.76 in that patient sub-cohort. Conclusions: This study is, to our knowledge, the first to offer a multimodal analysis of the response to neoadjuvant treatment for surgically resectable stage IIIA NSCLC and is a proof of concept that a machine learning algorithm can be used to predict the pCR in this context. These preliminary results are being confirmed in the ongoing NADIM II trial. Clinical trial information: NCT03838159.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助myjf采纳,获得10
1秒前
1秒前
xf完成签到,获得积分20
2秒前
天天快乐应助vvv采纳,获得10
2秒前
彭于彦祖应助liujun采纳,获得30
3秒前
Victoria发布了新的文献求助10
3秒前
Gzl发布了新的文献求助10
4秒前
乐乐应助123采纳,获得10
4秒前
暮然发布了新的文献求助10
5秒前
感冒了发布了新的文献求助10
5秒前
5秒前
pangdahai完成签到,获得积分10
6秒前
明天开始戒绿茶完成签到,获得积分10
6秒前
jessieinfrance完成签到,获得积分10
6秒前
6秒前
7秒前
eden完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
汉堡包应助微弱de胖头采纳,获得10
9秒前
9秒前
10秒前
firy完成签到,获得积分10
10秒前
11秒前
王子语发布了新的文献求助10
12秒前
邓佳鑫Alan应助2000dw采纳,获得10
12秒前
明亮不乐发布了新的文献求助10
12秒前
12秒前
12秒前
丘比特应助Yang采纳,获得30
13秒前
研友_VZG7GZ应助eden采纳,获得10
13秒前
张雯思发布了新的文献求助10
13秒前
张雯思发布了新的文献求助10
13秒前
myjf发布了新的文献求助10
13秒前
聪明无颜发布了新的文献求助30
13秒前
14秒前
15秒前
hkh发布了新的文献求助10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344