Multimodal prediction of response to neoadjuvant nivolumab and chemotherapy for surgically resectable stage IIIA non–small cell lung cancer.

医学 肿瘤科 队列 化学免疫疗法 无容量 新辅助治疗 内科学 肺癌 阶段(地层学) 癌症 放射科 外科 乳腺癌 免疫疗法 古生物学 生物
作者
Loïc Ferrer,Ernest Nadal,Floriane Guidel,Amelia Insa,Philippe Menu,J. Casal,Manuel Dómine,Bartomeu Massutí,Margarita Majem,Alex Martínez‐Martí,Rosario García Campelo,Javier de Castro,Manuel Cobo,G. López-Vivanco,E. del Barco,Reyes Bernabé,Nùria Viñolas,I. Barneto,Thierry Colin,Mariano Provencio-Pulla
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:40 (16_suppl): 8542-8542 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.8542
摘要

8542 Background: The NADIM trial (NCT03081689), led by the Spanish Lung Cancer Group, assessed the antitumor activity and safety of neoadjuvant chemoimmunotherapy for resectable stage IIIA NSCLC. Patients received neoadjuvant nivolumab and paclitaxel-carboplatin for three cycles before surgical resection, followed by one year of adjuvant nivolumab. At 24 months, progression-free survival (PFS) was 77%, suggesting that neoadjuvant chemoimmunotherapy represents a promising option in this setting. Pathological complete response (pCR) could potentially be used as an important surrogate endpoint for survival. We present here a re-analysis of the NADIM cohort aiming to develop a machine learning algorithm to predict the pCR status based on multimodal baseline data. Methods: We combined baseline clinical data (e.g., age, smoking status), biological data (e.g., tumor histology, mutations), radiology reports and radiomics analysis of the baseline CT scan in a multimodal analysis. While 46 patients were enrolled in the NADIM trial, only 28 had a complete set of data available for this retrospective study. For each patient, tumors were segmented on the baseline CT-scan in 3D by a Deep Learning algorithm. Radiomics features were extracted following the IBSI standards and combined with the other data modalities. A filter-based variable selection method was applied before training several machine learning algorithms. The optimization criterion was the Area Under the ROC Curve (AUC). Due to the small size of the cohort, a leave-one-out cross-validation approach was used to properly estimate the model performance. For a sub-cohort of 20 patients for which data have been collected longitudinally during the neoadjuvant treatment, an additional Delta-radiomics model was used to predict the pCR status. Results: An XGBoost algorithm with a linear base learner displayed an AUC of 0.69, a precision of 75%, a sensitivity of 83% and a specificity of 50%. Features with highest weight in the algorithm were a mix of radiological, radiomics, biological and clinical features (including the neutrophils to lymphocytes ratio, mutations and histology) highlighting the importance of a truly multimodal analysis. Indeed, withdrawing a specific data modality (e.g., radiomics or biological features), led to a decrease of ̃15% of the AUC. Inclusion of the Delta-radiomics analysis on the data collected longitudinally prior to surgery led to an improved AUC of 0.76 in that patient sub-cohort. Conclusions: This study is, to our knowledge, the first to offer a multimodal analysis of the response to neoadjuvant treatment for surgically resectable stage IIIA NSCLC and is a proof of concept that a machine learning algorithm can be used to predict the pCR in this context. These preliminary results are being confirmed in the ongoing NADIM II trial. Clinical trial information: NCT03838159.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
starry完成签到,获得积分10
1秒前
刘才华发布了新的文献求助10
1秒前
田様应助yhliu采纳,获得10
2秒前
深林小怪发布了新的文献求助10
3秒前
zz发布了新的文献求助10
3秒前
天天快乐应助无辜的梦竹采纳,获得10
3秒前
MiRAi完成签到 ,获得积分10
3秒前
Hello应助CCyaly采纳,获得10
4秒前
4秒前
kbj完成签到,获得积分10
4秒前
小西完成签到,获得积分10
4秒前
XinEr完成签到 ,获得积分10
4秒前
忘仔仙贝完成签到,获得积分10
5秒前
oversky发布了新的文献求助10
5秒前
xj发布了新的文献求助10
6秒前
科研通AI2S应助小詹采纳,获得10
6秒前
欢呼的鲂完成签到,获得积分10
7秒前
FF完成签到,获得积分10
7秒前
Ava应助bible采纳,获得30
7秒前
7秒前
8秒前
CL发布了新的文献求助10
8秒前
科研菜鸟完成签到,获得积分10
8秒前
科研通AI2S应助忘仔仙贝采纳,获得10
8秒前
李健应助无敌弓箭手采纳,获得10
9秒前
脑洞疼应助共产主义战士采纳,获得10
9秒前
白日焰火完成签到 ,获得积分10
11秒前
Sparkle完成签到,获得积分10
11秒前
领导范儿应助Thi采纳,获得10
11秒前
可爱的你发布了新的文献求助220
11秒前
70岁老太在线科研完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
Zhangtao完成签到,获得积分10
14秒前
15秒前
无敌弓箭手完成签到,获得积分10
15秒前
华仔应助zz采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3073888
求助须知:如何正确求助?哪些是违规求助? 2727453
关于积分的说明 7498999
捐赠科研通 2375357
什么是DOI,文献DOI怎么找? 1259436
科研通“疑难数据库(出版商)”最低求助积分说明 610687
版权声明 597079