亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ship Detection in High-Resolution Optical Remote Sensing Images Aided by Saliency Information

计算机科学 判别式 人工智能 目标检测 特征(语言学) 探测器 任务(项目管理) 深度学习 突出 计算机视觉 模式识别(心理学) 集合(抽象数据类型) 遥感 电信 地质学 哲学 语言学 管理 经济 程序设计语言
作者
Zhida Ren,Yongqiang Tang,Zewen He,Lei Tian,Yang Yang,Wensheng Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2022.3173610
摘要

Ship detection is a crucial but challenging task in optical remote sensing images. Recently, thanks to the emergence of deep neural networks, significant progress has been made in ship detection. However, there are still two significant issues that must be addressed: 1) The high-resolution optical images may confuse the background with the ship, leading to more false alarms during detection; 2) The detector receives fewer positive samples due to the sparse and uneven distribution of ships in the optical remote sensing images. In this paper, we innovatively propose employing the saliency information to aid the ship detection task to tackle these two issues. To achieve this goal, we devise two novel modules, Feature-Enhanced Structure (FES) and Saliency Prediction Branch (SPB), to boost the capacity of ship detection in complex environments, and propose a new sampling strategy named Salient Screening Mechanism (SSM) to increase the number of positive samples. More specifically, SSM is adopted during the training phase to mine more positive samples from the ignored set. Then, in an end-to-end learning fashion, a neural network that incorporates our carefully designed FES and SPB is trained to gain more discriminative information for distinguishing the foreground and the background. To evaluate the effectiveness of our proposal, two new datasets HRSC-SO and DOTA-isaid-ship are constructed, which possesses the annotation information for both object detection and saliency detection. We conduct extensive experiments on the constructed dataset, and the results demonstrate that our method outperforms the previous state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明安白发布了新的文献求助10
34秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
模糊中正完成签到,获得积分0
59秒前
ceeray23应助舒适的竺采纳,获得30
1分钟前
在水一方应助聪明安白采纳,获得10
1分钟前
1分钟前
mashibeo完成签到,获得积分10
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
尹静涵完成签到 ,获得积分10
4分钟前
4分钟前
那奇泡芙发布了新的文献求助10
4分钟前
小二郎应助那奇泡芙采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
感动白开水完成签到,获得积分10
5分钟前
5分钟前
5分钟前
kingqjack发布了新的文献求助10
5分钟前
纯真以松完成签到,获得积分20
7分钟前
Lucas应助luckss采纳,获得10
7分钟前
8分钟前
8分钟前
luckss发布了新的文献求助10
8分钟前
Anthocyanidin完成签到,获得积分10
8分钟前
8分钟前
Akim应助科研通管家采纳,获得10
8分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
顾矜应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
传奇3应助康康XY采纳,获得10
9分钟前
9分钟前
luckss发布了新的文献求助10
10分钟前
10分钟前
康康XY发布了新的文献求助10
10分钟前
纯真以松关注了科研通微信公众号
11分钟前
11分钟前
纯真以松发布了新的文献求助50
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697