已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MEMG: Mobile Encrypted Traffic Classification With Markov Chains and Graph Neural Network

计算机科学 人工智能 图形 机器学习 交通分类 加密 深度学习 特征向量 数据挖掘 理论计算机科学 计算机网络 网络数据包
作者
Wei Cai,Gaopeng Gou,Minghao Jiang,Chang Liu,Gang Xiong,Zhen Li
标识
DOI:10.1109/hpcc-dss-smartcity-dependsys53884.2021.00087
摘要

In recent years, user privacy and information Security have attracted widespread attention, encryption ratio of mobile traffic has increased tremendously, which has brought considerable challenges to traditional traffic classification meth-ods. Machine learning methods and deep learning methods have become mainstream methods to solve this problem. However, the existing machine learning methods require manual features and cannot adapt to the newly generated traffic patterns. Deep learning methods are capable of learning features from the raw traffic sequences automatically but will increase the calculation costs. To address these challenges, in this paper, we propose a Mobile Encrypted Traffic Classification with Markov Chains and Graph Neural Network (MEMG). We use the Markov chains to mine the hidden topological information of the flow. Then we build the flow graph structure on this basis, add the sequence information of traffic in the node feature in the graph. We also design a Graph Neural Network-based classifier to learn the topological and sequential features from the graph. The classifier can map the graph structure to the embedding space, and classify different graph structures by embedding vector differences. We have done comprehensive experiments on both the real-world dataset and the public dataset. The real-world dataset contains the traffic of 29 commonly used mobile encrypted applications collected by us recently, and the total number of traffic exceeds 116,000. Our method outperforms the state-of-the-art methods by 6.1% and 3.5% of the accuracy rate on our dataset and public dataset, respectively. We also lessen the training time overhead and GPU memory usage by 40% and 46%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴兰田完成签到,获得积分10
刚刚
wengjiaqi发布了新的文献求助10
刚刚
Ysh2255关注了科研通微信公众号
刚刚
颜林林完成签到,获得积分10
1秒前
迷路聋五发布了新的文献求助20
1秒前
2秒前
王亚茹完成签到,获得积分10
2秒前
3秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
mochi发布了新的文献求助10
8秒前
坚强长颈鹿完成签到 ,获得积分10
10秒前
充电宝应助Blake采纳,获得10
11秒前
11秒前
12秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
xxj发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
orixero应助阿里鲁鲁采纳,获得10
18秒前
18秒前
18秒前
19秒前
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164662
求助须知:如何正确求助?哪些是违规求助? 2815515
关于积分的说明 7909748
捐赠科研通 2475233
什么是DOI,文献DOI怎么找? 1317996
科研通“疑难数据库(出版商)”最低求助积分说明 631984
版权声明 602282