MEMG: Mobile Encrypted Traffic Classification With Markov Chains and Graph Neural Network

计算机科学 人工智能 图形 机器学习 交通分类 加密 深度学习 特征向量 数据挖掘 理论计算机科学 计算机网络 网络数据包
作者
Wei Cai,Gaopeng Gou,Minghao Jiang,Chang Liu,Gang Xiong,Zhen Li
标识
DOI:10.1109/hpcc-dss-smartcity-dependsys53884.2021.00087
摘要

In recent years, user privacy and information Security have attracted widespread attention, encryption ratio of mobile traffic has increased tremendously, which has brought considerable challenges to traditional traffic classification meth-ods. Machine learning methods and deep learning methods have become mainstream methods to solve this problem. However, the existing machine learning methods require manual features and cannot adapt to the newly generated traffic patterns. Deep learning methods are capable of learning features from the raw traffic sequences automatically but will increase the calculation costs. To address these challenges, in this paper, we propose a Mobile Encrypted Traffic Classification with Markov Chains and Graph Neural Network (MEMG). We use the Markov chains to mine the hidden topological information of the flow. Then we build the flow graph structure on this basis, add the sequence information of traffic in the node feature in the graph. We also design a Graph Neural Network-based classifier to learn the topological and sequential features from the graph. The classifier can map the graph structure to the embedding space, and classify different graph structures by embedding vector differences. We have done comprehensive experiments on both the real-world dataset and the public dataset. The real-world dataset contains the traffic of 29 commonly used mobile encrypted applications collected by us recently, and the total number of traffic exceeds 116,000. Our method outperforms the state-of-the-art methods by 6.1% and 3.5% of the accuracy rate on our dataset and public dataset, respectively. We also lessen the training time overhead and GPU memory usage by 40% and 46%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
橘柚完成签到 ,获得积分10
2秒前
zmmmm发布了新的文献求助10
2秒前
领导范儿应助温言采纳,获得10
2秒前
思源应助OvO采纳,获得10
4秒前
迷糊发布了新的文献求助30
5秒前
LY发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
KimJongUn完成签到,获得积分10
6秒前
8秒前
8秒前
zy完成签到,获得积分10
9秒前
开心果子发布了新的文献求助10
9秒前
云痴子完成签到,获得积分10
10秒前
SciGPT应助粥粥采纳,获得10
10秒前
10秒前
10秒前
11秒前
苏源完成签到,获得积分10
11秒前
wu关闭了wu文献求助
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
Shawn完成签到,获得积分10
14秒前
yltstt完成签到,获得积分10
15秒前
李小新发布了新的文献求助10
15秒前
成梦发布了新的文献求助10
16秒前
乐乐应助xuex1采纳,获得10
16秒前
蜂鸟5156发布了新的文献求助10
16秒前
李爱国应助VDC采纳,获得10
17秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808