TFNet: Transformer Fusion Network for Ultrasound Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 图像分割 变压器 人工神经网络 计算机视觉 电压 量子力学 物理
作者
Tao Wang,Zhihui Lai,Heng Kong
出处
期刊:Lecture Notes in Computer Science 卷期号:: 314-325 被引量:4
标识
DOI:10.1007/978-3-031-02375-0_23
摘要

Automatic lesion segmentation in ultrasound helps diagnose diseases. Segmenting lesion regions accurately from ultrasound images is a challenging task due to the difference in the scale of the lesion and the uneven intensity distribution in the lesion area. Recently, Convolutional Neural Networks have achieved tremendous success on medical image segmentation tasks. However, due to the inherent locality of convolution operations, it is limited in modeling long-range dependency. In this paper, we study the more challenging problem on capturing long-range dependencies and multi-scale targets without losing detailed information. We propose a Transformer-based feature fusion network (TFNet), which fuses long-range dependency of multi-scale CNN features via Transformer to effectively solve the above challenges. In order to make up for the defect of Transformer in channel modeling, will be improved by joining the channel attention mechanism. In addition, a loss function is designed to modify the prediction map by computing the variance between the prediction results of the auxiliary classifier and the main classifier. We have conducted experiments on three data sets, and the results show that our proposed method achieves superior performances against various competing methods on ultrasound image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lilililili完成签到,获得积分10
5秒前
5秒前
6秒前
洪伟发布了新的文献求助10
6秒前
7秒前
小岳同学发布了新的文献求助10
9秒前
10秒前
鱼芋屿发布了新的文献求助10
11秒前
12秒前
斯文败类应助小亮哈哈采纳,获得10
12秒前
苏78发布了新的文献求助10
13秒前
陈佳发布了新的文献求助10
14秒前
14秒前
zyn完成签到,获得积分10
15秒前
16秒前
南瓜气气发布了新的文献求助10
17秒前
科研通AI2S应助曾经的孤萍采纳,获得10
18秒前
酷波er应助小岳同学采纳,获得10
20秒前
传奇3应助typewmichael采纳,获得10
20秒前
qqq完成签到,获得积分10
21秒前
晚风完成签到,获得积分10
23秒前
五花膘完成签到 ,获得积分10
23秒前
24秒前
完美世界应助苏78采纳,获得10
24秒前
852应助苗条世德采纳,获得10
24秒前
1111发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
27秒前
allia完成签到 ,获得积分10
28秒前
山顶的望眼镜完成签到,获得积分10
29秒前
苏78完成签到,获得积分20
31秒前
32秒前
33秒前
Sicecream完成签到,获得积分10
35秒前
35秒前
35秒前
37秒前
37秒前
寻舟者完成签到,获得积分10
38秒前
tufuczy发布了新的文献求助10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150