膨胀(度量空间)
卷积神经网络
趋同(经济学)
数学形态学
人工神经网络
反向传播
几何学
计算机科学
算法
人工智能
数学
拓扑(电路)
组合数学
图像处理
图像(数学)
经济
经济增长
作者
Rick Groenendijk,L. Dorst,T. Gevers
标识
DOI:10.36227/techrxiv.20330667
摘要
<p>This paper provides a definition of back-propagation through geometric correspondences for morphological neural networks. In addition, dilation layers are shown to learn probe geometry by erosion of layer inputs and outputs. A proof-of-principle is provided, in which predictions and convergence of morphological networks significantly outperform convolutional networks.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI